分析移动传感器大数据走向可靠的在线服务

G. Hu, Xin Zhang, Ning Duan, Peng Gao
{"title":"分析移动传感器大数据走向可靠的在线服务","authors":"G. Hu, Xin Zhang, Ning Duan, Peng Gao","doi":"10.1109/ICWS.2017.104","DOIUrl":null,"url":null,"abstract":"Sensors are pervasively deployed on mobile devices with the development of Internet of Things technology. Value-added services are innovated and developed by analyzing data streams from massive number of mobile sensors in online mode. Due to dynamic working condition of mobile sensors and the high data rate, back end analytic services confront incoming streams with large rate fluctuation and out-of-order time series. This puts forward special challenges in service implementation for commercial applications, where good reliability/scalability performance is a must. In this paper, a data ingestion and scheduling framework is proposed to enable large-scale tempo-spatial streams analysis in a reliable and cost-effective way. A case study on a real world application adopting this framework is introduced and its pilot result is presented.","PeriodicalId":235426,"journal":{"name":"2017 IEEE International Conference on Web Services (ICWS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards Reliable Online Services Analyzing Mobile Sensor Big Data\",\"authors\":\"G. Hu, Xin Zhang, Ning Duan, Peng Gao\",\"doi\":\"10.1109/ICWS.2017.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensors are pervasively deployed on mobile devices with the development of Internet of Things technology. Value-added services are innovated and developed by analyzing data streams from massive number of mobile sensors in online mode. Due to dynamic working condition of mobile sensors and the high data rate, back end analytic services confront incoming streams with large rate fluctuation and out-of-order time series. This puts forward special challenges in service implementation for commercial applications, where good reliability/scalability performance is a must. In this paper, a data ingestion and scheduling framework is proposed to enable large-scale tempo-spatial streams analysis in a reliable and cost-effective way. A case study on a real world application adopting this framework is introduced and its pilot result is presented.\",\"PeriodicalId\":235426,\"journal\":{\"name\":\"2017 IEEE International Conference on Web Services (ICWS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Web Services (ICWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWS.2017.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Web Services (ICWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2017.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着物联网技术的发展,传感器在移动设备上得到了广泛的应用。增值业务是通过在线分析大量移动传感器的数据流来创新和发展的。由于移动传感器的动态工作状态和较高的数据速率,后端分析服务面临着速率波动大、时间序列乱序的传入流。这对商业应用程序的服务实现提出了特殊的挑战,商业应用程序必须具有良好的可靠性/可伸缩性性能。本文提出了一种数据摄取和调度框架,使大尺度时空流分析能够以可靠和经济的方式进行。介绍了采用该框架的实际应用实例,并给出了试验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Reliable Online Services Analyzing Mobile Sensor Big Data
Sensors are pervasively deployed on mobile devices with the development of Internet of Things technology. Value-added services are innovated and developed by analyzing data streams from massive number of mobile sensors in online mode. Due to dynamic working condition of mobile sensors and the high data rate, back end analytic services confront incoming streams with large rate fluctuation and out-of-order time series. This puts forward special challenges in service implementation for commercial applications, where good reliability/scalability performance is a must. In this paper, a data ingestion and scheduling framework is proposed to enable large-scale tempo-spatial streams analysis in a reliable and cost-effective way. A case study on a real world application adopting this framework is introduced and its pilot result is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信