基于电池储能系统-虚拟同步发电机(BESS-VSG)的微电网控制策略

Wei Gao
{"title":"基于电池储能系统-虚拟同步发电机(BESS-VSG)的微电网控制策略","authors":"Wei Gao","doi":"10.1109/KPEC47870.2020.9167653","DOIUrl":null,"url":null,"abstract":"With more and more renewable energy resources integrated into the power grid, the system is losing inertia because power electronics-based generators do not provide natural inertia. The low inertia will cause the microgrid to be more sensitive to disturbance and thus a small load change may result in a severe deviation in frequency. Based on the basic VSG algorithm, which is to mimic the characteristic of the traditional synchronous generator, the frequency can be controlled to a stable value faster and more smoothly when there is a fluctuation in the PV power generation and/or load change. However, characteristic of the VSG depends on the system structure in consideration of multiple generations, such as Synchronous Generator (SG), PV and Battery Energy Storage System (BESS), which greatly increases the complexity of applying VSG in practical power system. Furthermore, with BESS-VSG, Maximum Power Point (MPP) operation of PV is guaranteed. In addition, an adaptive VSG method is developed for a microgrid system, and the corresponding simulation in Matlab/Simulink shows the effectiveness of the adaptive VSG method.","PeriodicalId":308212,"journal":{"name":"2020 IEEE Kansas Power and Energy Conference (KPEC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Microgrid Control Strategy Based on Battery Energy Storage System-Virtual Synchronous Generator (BESS-VSG)\",\"authors\":\"Wei Gao\",\"doi\":\"10.1109/KPEC47870.2020.9167653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With more and more renewable energy resources integrated into the power grid, the system is losing inertia because power electronics-based generators do not provide natural inertia. The low inertia will cause the microgrid to be more sensitive to disturbance and thus a small load change may result in a severe deviation in frequency. Based on the basic VSG algorithm, which is to mimic the characteristic of the traditional synchronous generator, the frequency can be controlled to a stable value faster and more smoothly when there is a fluctuation in the PV power generation and/or load change. However, characteristic of the VSG depends on the system structure in consideration of multiple generations, such as Synchronous Generator (SG), PV and Battery Energy Storage System (BESS), which greatly increases the complexity of applying VSG in practical power system. Furthermore, with BESS-VSG, Maximum Power Point (MPP) operation of PV is guaranteed. In addition, an adaptive VSG method is developed for a microgrid system, and the corresponding simulation in Matlab/Simulink shows the effectiveness of the adaptive VSG method.\",\"PeriodicalId\":308212,\"journal\":{\"name\":\"2020 IEEE Kansas Power and Energy Conference (KPEC)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Kansas Power and Energy Conference (KPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KPEC47870.2020.9167653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Kansas Power and Energy Conference (KPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KPEC47870.2020.9167653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着越来越多的可再生能源被纳入电网,系统正在失去惯性,因为基于电力电子的发电机不能提供自然惯性。低惯性会使微电网对扰动更加敏感,因此负荷的微小变化可能导致严重的频率偏差。基于基本的VSG算法,模拟传统同步发电机的特性,当光伏发电出现波动或负荷变化时,可以更快、更平稳地将频率控制到稳定值。然而,VSG的特性取决于系统结构,需要考虑同步发电机(SG)、光伏发电(PV)和电池储能系统(BESS)等多代,这大大增加了VSG在实际电力系统中的应用复杂性。此外,通过BESS-VSG,光伏发电的最大功率点(MPP)运行得到了保证。此外,针对微电网系统开发了自适应VSG方法,并在Matlab/Simulink中进行了仿真,验证了自适应VSG方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microgrid Control Strategy Based on Battery Energy Storage System-Virtual Synchronous Generator (BESS-VSG)
With more and more renewable energy resources integrated into the power grid, the system is losing inertia because power electronics-based generators do not provide natural inertia. The low inertia will cause the microgrid to be more sensitive to disturbance and thus a small load change may result in a severe deviation in frequency. Based on the basic VSG algorithm, which is to mimic the characteristic of the traditional synchronous generator, the frequency can be controlled to a stable value faster and more smoothly when there is a fluctuation in the PV power generation and/or load change. However, characteristic of the VSG depends on the system structure in consideration of multiple generations, such as Synchronous Generator (SG), PV and Battery Energy Storage System (BESS), which greatly increases the complexity of applying VSG in practical power system. Furthermore, with BESS-VSG, Maximum Power Point (MPP) operation of PV is guaranteed. In addition, an adaptive VSG method is developed for a microgrid system, and the corresponding simulation in Matlab/Simulink shows the effectiveness of the adaptive VSG method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信