基于正交约束的非负矩阵分解的群体检测

Yaoyao Qin, Caiyan Jia, Yafang Li
{"title":"基于正交约束的非负矩阵分解的群体检测","authors":"Yaoyao Qin, Caiyan Jia, Yafang Li","doi":"10.1109/ICACI.2016.7449802","DOIUrl":null,"url":null,"abstract":"Community structure is one of the most important properties for understanding the topology and function of a complex network. Recently, the rank reduction technique, non-negative matrix factorization (NMF), has been successfully used to uncover communities in complex networks. In the machine learning literature, the algorithm Alternating Constraint Least Squares (ACLS) is developed to perform NMF with sparsity constraint for clustering data and showed good performance, but it is not used in detecting communities in networks. In this study, we first test the ACLS algorithm on several synthetic and real networks to show its performance on community detection. Then we extend ACLS to orthogonal nonnegative matrix factorization, propose ALSOC, in which orthogonality constraint is added into NMF to discovery communities. The experimental results show that NMF with orthogonality constraint is able to improve the performance of community detection, meanwhile it has ability to maintain the sparsity of matrix factors.","PeriodicalId":211040,"journal":{"name":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Community detection using nonnegative matrix factorization with orthogonal constraint\",\"authors\":\"Yaoyao Qin, Caiyan Jia, Yafang Li\",\"doi\":\"10.1109/ICACI.2016.7449802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Community structure is one of the most important properties for understanding the topology and function of a complex network. Recently, the rank reduction technique, non-negative matrix factorization (NMF), has been successfully used to uncover communities in complex networks. In the machine learning literature, the algorithm Alternating Constraint Least Squares (ACLS) is developed to perform NMF with sparsity constraint for clustering data and showed good performance, but it is not used in detecting communities in networks. In this study, we first test the ACLS algorithm on several synthetic and real networks to show its performance on community detection. Then we extend ACLS to orthogonal nonnegative matrix factorization, propose ALSOC, in which orthogonality constraint is added into NMF to discovery communities. The experimental results show that NMF with orthogonality constraint is able to improve the performance of community detection, meanwhile it has ability to maintain the sparsity of matrix factors.\",\"PeriodicalId\":211040,\"journal\":{\"name\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2016.7449802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2016.7449802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

群落结构是理解复杂网络拓扑结构和功能的重要属性之一。近年来,秩约技术——非负矩阵分解(NMF)已被成功地用于复杂网络中的群落揭示。在机器学习文献中,交替约束最小二乘(ACLS)算法被开发用于对聚类数据进行具有稀疏性约束的NMF,并显示出良好的性能,但尚未用于网络中的社区检测。在本研究中,我们首先在几个合成网络和真实网络上测试了ACLS算法,以展示其在社区检测方面的性能。然后将ACLS扩展到正交非负矩阵分解,提出了在NMF中加入正交性约束的ALSOC。实验结果表明,具有正交性约束的NMF能够提高群体检测的性能,同时能够保持矩阵因子的稀疏性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Community detection using nonnegative matrix factorization with orthogonal constraint
Community structure is one of the most important properties for understanding the topology and function of a complex network. Recently, the rank reduction technique, non-negative matrix factorization (NMF), has been successfully used to uncover communities in complex networks. In the machine learning literature, the algorithm Alternating Constraint Least Squares (ACLS) is developed to perform NMF with sparsity constraint for clustering data and showed good performance, but it is not used in detecting communities in networks. In this study, we first test the ACLS algorithm on several synthetic and real networks to show its performance on community detection. Then we extend ACLS to orthogonal nonnegative matrix factorization, propose ALSOC, in which orthogonality constraint is added into NMF to discovery communities. The experimental results show that NMF with orthogonality constraint is able to improve the performance of community detection, meanwhile it has ability to maintain the sparsity of matrix factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信