细胞学中三维共聚焦图像分析的统一几何模型

Alessandro Sarti, C. Ortíz, S. Lockett, R. Malladi
{"title":"细胞学中三维共聚焦图像分析的统一几何模型","authors":"Alessandro Sarti, C. Ortíz, S. Lockett, R. Malladi","doi":"10.1109/SIBGRA.1998.722735","DOIUrl":null,"url":null,"abstract":"In this paper, we use partial differential equation based analysis as a methodology for computer-aided cytology. We wish to accurately extract and classify the shapes of nuclei from noisy confocal microscopy images. This is a prerequisite to an accurate quantitative intranuclear (genotypic and phenotypic) and internuclear (tissue structure) analysis of cancerous and pre-cancerous specimens. We study the use of a geometric-driven scheme for improving the results obtained by a nuclear segmentation method, based on automatic segmentation, followed by object reconstruction and interactive classification. We build a chain of methods that includes an edge-preserving image smoothing mechanism, an automatic (albeit non-regularized) segmentation method, a geometry-driven scheme to regularize the shapes and improve edge fidelity, and an interactive method to split shape clusters and reclassify them.","PeriodicalId":282177,"journal":{"name":"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A unified geometric model for 3D confocal image analysis in cytology\",\"authors\":\"Alessandro Sarti, C. Ortíz, S. Lockett, R. Malladi\",\"doi\":\"10.1109/SIBGRA.1998.722735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use partial differential equation based analysis as a methodology for computer-aided cytology. We wish to accurately extract and classify the shapes of nuclei from noisy confocal microscopy images. This is a prerequisite to an accurate quantitative intranuclear (genotypic and phenotypic) and internuclear (tissue structure) analysis of cancerous and pre-cancerous specimens. We study the use of a geometric-driven scheme for improving the results obtained by a nuclear segmentation method, based on automatic segmentation, followed by object reconstruction and interactive classification. We build a chain of methods that includes an edge-preserving image smoothing mechanism, an automatic (albeit non-regularized) segmentation method, a geometry-driven scheme to regularize the shapes and improve edge fidelity, and an interactive method to split shape clusters and reclassify them.\",\"PeriodicalId\":282177,\"journal\":{\"name\":\"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRA.1998.722735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRA.1998.722735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在本文中,我们使用基于偏微分方程的分析作为计算机辅助细胞学的方法。我们希望准确地提取和分类核的形状从噪声共聚焦显微镜图像。这是对癌和癌前标本进行准确定量核内(基因型和表型)和核间(组织结构)分析的先决条件。我们研究了使用几何驱动方案来改进核分割方法获得的结果,基于自动分割,然后是对象重建和交互式分类。我们构建了一系列方法,包括边缘保持图像平滑机制,自动(尽管非正则化)分割方法,几何驱动方案来正则化形状并提高边缘保真度,以及交互式方法来分裂形状簇并重新分类它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified geometric model for 3D confocal image analysis in cytology
In this paper, we use partial differential equation based analysis as a methodology for computer-aided cytology. We wish to accurately extract and classify the shapes of nuclei from noisy confocal microscopy images. This is a prerequisite to an accurate quantitative intranuclear (genotypic and phenotypic) and internuclear (tissue structure) analysis of cancerous and pre-cancerous specimens. We study the use of a geometric-driven scheme for improving the results obtained by a nuclear segmentation method, based on automatic segmentation, followed by object reconstruction and interactive classification. We build a chain of methods that includes an edge-preserving image smoothing mechanism, an automatic (albeit non-regularized) segmentation method, a geometry-driven scheme to regularize the shapes and improve edge fidelity, and an interactive method to split shape clusters and reclassify them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信