{"title":"扩展突发模式电路的平均箱优化晶体管级技术映射","authors":"K. W. James, K. Yun","doi":"10.1109/ASYNC.1998.666495","DOIUrl":null,"url":null,"abstract":"We describe an automated method (3D-map) for determining near-optimal decomposed generalized C-element (gC) implementations of extended burst-mode asynchronous controllers. Average-case optimization is performed so that frequent paths are accelerated, possibly at the expense of less frequent paths. The overall effect, as quantified using Elmore delay analysis, is a circuit that has near-optimal performance for the average or common case.","PeriodicalId":425072,"journal":{"name":"Proceedings Fourth International Symposium on Advanced Research in Asynchronous Circuits and Systems","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Average-case optimized transistor-level technology mapping of extended burst-mode circuits\",\"authors\":\"K. W. James, K. Yun\",\"doi\":\"10.1109/ASYNC.1998.666495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an automated method (3D-map) for determining near-optimal decomposed generalized C-element (gC) implementations of extended burst-mode asynchronous controllers. Average-case optimization is performed so that frequent paths are accelerated, possibly at the expense of less frequent paths. The overall effect, as quantified using Elmore delay analysis, is a circuit that has near-optimal performance for the average or common case.\",\"PeriodicalId\":425072,\"journal\":{\"name\":\"Proceedings Fourth International Symposium on Advanced Research in Asynchronous Circuits and Systems\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth International Symposium on Advanced Research in Asynchronous Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASYNC.1998.666495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth International Symposium on Advanced Research in Asynchronous Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASYNC.1998.666495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Average-case optimized transistor-level technology mapping of extended burst-mode circuits
We describe an automated method (3D-map) for determining near-optimal decomposed generalized C-element (gC) implementations of extended burst-mode asynchronous controllers. Average-case optimization is performed so that frequent paths are accelerated, possibly at the expense of less frequent paths. The overall effect, as quantified using Elmore delay analysis, is a circuit that has near-optimal performance for the average or common case.