最优正则化核Fisher判别分析

Kamel Saadi, N. L. C. Talbot, G. Cawley
{"title":"最优正则化核Fisher判别分析","authors":"Kamel Saadi, N. L. C. Talbot, G. Cawley","doi":"10.1109/ICPR.2004.1334245","DOIUrl":null,"url":null,"abstract":"Mika et al. (1999) introduce a non-linear formulation of Fisher's linear discriminant, based the now familiar \"kernel trick\", demonstrating state-of-the-art performance on a wide range of real-world benchmark datasets. In this paper, we show that the usual regularisation parameter can be adjusted so as to minimise the leave-one-out cross-validation error with a computational complexity of only O(/spl lscr//sup 2/) operations, where /spl lscr/ is the number of training patterns, rather than the O(/spl lscr//sup 4/) operations required for a naive implementation of the leave-one-out procedure. This procedure is then used to form a component of an efficient hierarchical model selection strategy where the regularisation parameter is optimised within the inner loop while the kernel parameters are optimised in the outer loop.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimally regularised kernel Fisher discriminant analysis\",\"authors\":\"Kamel Saadi, N. L. C. Talbot, G. Cawley\",\"doi\":\"10.1109/ICPR.2004.1334245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mika et al. (1999) introduce a non-linear formulation of Fisher's linear discriminant, based the now familiar \\\"kernel trick\\\", demonstrating state-of-the-art performance on a wide range of real-world benchmark datasets. In this paper, we show that the usual regularisation parameter can be adjusted so as to minimise the leave-one-out cross-validation error with a computational complexity of only O(/spl lscr//sup 2/) operations, where /spl lscr/ is the number of training patterns, rather than the O(/spl lscr//sup 4/) operations required for a naive implementation of the leave-one-out procedure. This procedure is then used to form a component of an efficient hierarchical model selection strategy where the regularisation parameter is optimised within the inner loop while the kernel parameters are optimised in the outer loop.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.1334245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Mika等人(1999)基于现在熟悉的“核技巧”,引入了Fisher线性判别式的非线性公式,在广泛的现实世界基准数据集上展示了最先进的性能。在本文中,我们证明了通常的正则化参数可以调整,以最小化留一交叉验证误差,计算复杂性仅为O(/spl lscr//sup 2/)操作,其中/spl lscr/是训练模式的数量,而不是O(/spl lscr//sup 4/)操作,这是简单实现留一过程所需的。然后,该过程用于形成有效的分层模型选择策略的组成部分,其中正则化参数在内循环中优化,而内核参数在外循环中优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimally regularised kernel Fisher discriminant analysis
Mika et al. (1999) introduce a non-linear formulation of Fisher's linear discriminant, based the now familiar "kernel trick", demonstrating state-of-the-art performance on a wide range of real-world benchmark datasets. In this paper, we show that the usual regularisation parameter can be adjusted so as to minimise the leave-one-out cross-validation error with a computational complexity of only O(/spl lscr//sup 2/) operations, where /spl lscr/ is the number of training patterns, rather than the O(/spl lscr//sup 4/) operations required for a naive implementation of the leave-one-out procedure. This procedure is then used to form a component of an efficient hierarchical model selection strategy where the regularisation parameter is optimised within the inner loop while the kernel parameters are optimised in the outer loop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信