新的基于奖励的运动,以改善全球发展的BCO护士名册问题

Vebby Clarissa, S. Suyanto
{"title":"新的基于奖励的运动,以改善全球发展的BCO护士名册问题","authors":"Vebby Clarissa, S. Suyanto","doi":"10.1109/ISRITI48646.2019.9034669","DOIUrl":null,"url":null,"abstract":"Nurse Rostering Problem (NRP) is a crucial problem in hospital industry with combinatorial complex problem. NRP is one of the NP-Hard problems, which means that today there is no definite algorithm that is capable of solving the problem. In this paper, a metaheuristic approach called Reward-Based Movement for Bee Colony Optimization (RBMBCO) is proposed to solve the NRP. It is evaluated using an NRP instance of 30 nurses for 4 weeks of assignment from The Second International Nurse Rostering Competition (INRC-II) dataset. The experimental results show that RBMBCO is capable of generating a better solution than the standard Globally-Evolved Bee Colony Optimization.","PeriodicalId":367363,"journal":{"name":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"332 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"New Reward-Based Movement to Improve Globally-Evolved BCO in Nurse Rostering Problem\",\"authors\":\"Vebby Clarissa, S. Suyanto\",\"doi\":\"10.1109/ISRITI48646.2019.9034669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nurse Rostering Problem (NRP) is a crucial problem in hospital industry with combinatorial complex problem. NRP is one of the NP-Hard problems, which means that today there is no definite algorithm that is capable of solving the problem. In this paper, a metaheuristic approach called Reward-Based Movement for Bee Colony Optimization (RBMBCO) is proposed to solve the NRP. It is evaluated using an NRP instance of 30 nurses for 4 weeks of assignment from The Second International Nurse Rostering Competition (INRC-II) dataset. The experimental results show that RBMBCO is capable of generating a better solution than the standard Globally-Evolved Bee Colony Optimization.\",\"PeriodicalId\":367363,\"journal\":{\"name\":\"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)\",\"volume\":\"332 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISRITI48646.2019.9034669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI48646.2019.9034669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

护士值勤问题是医院行业中一个具有组合复杂问题的关键问题。NRP是NP-Hard问题之一,这意味着目前还没有明确的算法能够解决这个问题。本文提出了一种基于奖励运动的蜂群优化(RBMBCO)元启发式方法来解决NRP问题。使用来自第二届国际护士名册竞赛(INRC-II)数据集的30名护士为期4周的NRP实例进行评估。实验结果表明,RBMBCO能够生成比标准的全局进化蜂群优化算法更好的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Reward-Based Movement to Improve Globally-Evolved BCO in Nurse Rostering Problem
Nurse Rostering Problem (NRP) is a crucial problem in hospital industry with combinatorial complex problem. NRP is one of the NP-Hard problems, which means that today there is no definite algorithm that is capable of solving the problem. In this paper, a metaheuristic approach called Reward-Based Movement for Bee Colony Optimization (RBMBCO) is proposed to solve the NRP. It is evaluated using an NRP instance of 30 nurses for 4 weeks of assignment from The Second International Nurse Rostering Competition (INRC-II) dataset. The experimental results show that RBMBCO is capable of generating a better solution than the standard Globally-Evolved Bee Colony Optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信