广义流量最大化的强多项式算法

László A. Végh
{"title":"广义流量最大化的强多项式算法","authors":"László A. Végh","doi":"10.1145/2591796.2591806","DOIUrl":null,"url":null,"abstract":"A strongly polynomial algorithm is given for the generalized flow maximization problem. It uses a new variant of the scaling technique, called continuous scaling. The main measure of progress is that within a strongly polynomial number of steps, an arc can be identified that must be tight in every dual optimal solution, and thus can be contracted.","PeriodicalId":123501,"journal":{"name":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"A strongly polynomial algorithm for generalized flow maximization\",\"authors\":\"László A. Végh\",\"doi\":\"10.1145/2591796.2591806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A strongly polynomial algorithm is given for the generalized flow maximization problem. It uses a new variant of the scaling technique, called continuous scaling. The main measure of progress is that within a strongly polynomial number of steps, an arc can be identified that must be tight in every dual optimal solution, and thus can be contracted.\",\"PeriodicalId\":123501,\"journal\":{\"name\":\"Proceedings of the forty-sixth annual ACM symposium on Theory of computing\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-sixth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2591796.2591806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-sixth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591796.2591806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

给出了广义流量最大化问题的一种强多项式算法。它使用了缩放技术的一种新变体,称为连续缩放。进度的主要度量是,在一个强多项式的步骤数内,可以识别出在每个对偶最优解中必须是紧的弧,因此可以收缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A strongly polynomial algorithm for generalized flow maximization
A strongly polynomial algorithm is given for the generalized flow maximization problem. It uses a new variant of the scaling technique, called continuous scaling. The main measure of progress is that within a strongly polynomial number of steps, an arc can be identified that must be tight in every dual optimal solution, and thus can be contracted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信