基于可处理模糊本体语言的可扩展推理

G. Stoilos, Jeff Z. Pan, G. Stamou
{"title":"基于可处理模糊本体语言的可扩展推理","authors":"G. Stoilos, Jeff Z. Pan, G. Stamou","doi":"10.4018/978-1-60566-858-1.CH005","DOIUrl":null,"url":null,"abstract":"The last couple of years it is widely acknowledged that uncertainty and fuzzy extensions to ontology languages, like description logics (DLs) and OWL, could play a significant role in the improvement of many Semantic Web (SW) applications like matching, merging and ranking. Unfortunately, existing fuzzy reasoners focus on very expressive fuzzy ontology languages, like OWL, and are thus not able to handle the scale of data that the Web provides. For those reasons much research effort has been focused on providing fuzzy extensions and algorithms for tractable ontology languages. In this chapter, the authors present some recent results about reasoning and fuzzy query answering over tractable/polynomial fuzzy ontology languages namely Fuzzy DL-Lite and Fuzzy EL+. Fuzzy DL-Lite provides scalable algorithms for very expressive (extended) conjunctive queries, while Fuzzy EL+ provides polynomial algorithms for knowledge classification. For the Fuzzy DL-Lite case the authors will also report on an implementation in the ONTOSEARCH2 system and preliminary, but encouraging, benchmarking results.","PeriodicalId":293388,"journal":{"name":"Scalable Fuzzy Algorithms for Data Management and Analysis","volume":"369 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Scalable Reasoning with Tractable Fuzzy Ontology Languages\",\"authors\":\"G. Stoilos, Jeff Z. Pan, G. Stamou\",\"doi\":\"10.4018/978-1-60566-858-1.CH005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The last couple of years it is widely acknowledged that uncertainty and fuzzy extensions to ontology languages, like description logics (DLs) and OWL, could play a significant role in the improvement of many Semantic Web (SW) applications like matching, merging and ranking. Unfortunately, existing fuzzy reasoners focus on very expressive fuzzy ontology languages, like OWL, and are thus not able to handle the scale of data that the Web provides. For those reasons much research effort has been focused on providing fuzzy extensions and algorithms for tractable ontology languages. In this chapter, the authors present some recent results about reasoning and fuzzy query answering over tractable/polynomial fuzzy ontology languages namely Fuzzy DL-Lite and Fuzzy EL+. Fuzzy DL-Lite provides scalable algorithms for very expressive (extended) conjunctive queries, while Fuzzy EL+ provides polynomial algorithms for knowledge classification. For the Fuzzy DL-Lite case the authors will also report on an implementation in the ONTOSEARCH2 system and preliminary, but encouraging, benchmarking results.\",\"PeriodicalId\":293388,\"journal\":{\"name\":\"Scalable Fuzzy Algorithms for Data Management and Analysis\",\"volume\":\"369 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scalable Fuzzy Algorithms for Data Management and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-60566-858-1.CH005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Fuzzy Algorithms for Data Management and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-60566-858-1.CH005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在过去的几年里,人们普遍认识到本体语言的不确定性和模糊扩展,如描述逻辑(dl)和OWL,可以在许多语义Web (SW)应用程序的改进中发挥重要作用,如匹配、合并和排序。不幸的是,现有的模糊推理器专注于表达能力很强的模糊本体语言,比如OWL,因此无法处理Web提供的大量数据。由于这些原因,许多研究工作都集中在为可处理的本体语言提供模糊扩展和算法上。在这一章中,作者给出了一些关于可处理/多项式模糊本体语言(fuzzy DL-Lite和fuzzy EL+)推理和模糊查询回答的最新成果。模糊DL-Lite为非常有表现力的(扩展的)连接查询提供了可扩展的算法,而模糊EL+为知识分类提供了多项式算法。对于模糊DL-Lite案例,作者还将报告在ONTOSEARCH2系统中的实现和初步但令人鼓舞的基准测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Reasoning with Tractable Fuzzy Ontology Languages
The last couple of years it is widely acknowledged that uncertainty and fuzzy extensions to ontology languages, like description logics (DLs) and OWL, could play a significant role in the improvement of many Semantic Web (SW) applications like matching, merging and ranking. Unfortunately, existing fuzzy reasoners focus on very expressive fuzzy ontology languages, like OWL, and are thus not able to handle the scale of data that the Web provides. For those reasons much research effort has been focused on providing fuzzy extensions and algorithms for tractable ontology languages. In this chapter, the authors present some recent results about reasoning and fuzzy query answering over tractable/polynomial fuzzy ontology languages namely Fuzzy DL-Lite and Fuzzy EL+. Fuzzy DL-Lite provides scalable algorithms for very expressive (extended) conjunctive queries, while Fuzzy EL+ provides polynomial algorithms for knowledge classification. For the Fuzzy DL-Lite case the authors will also report on an implementation in the ONTOSEARCH2 system and preliminary, but encouraging, benchmarking results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信