基于协同全变分的高光谱图像绘制

P. Addesso, M. Mura, Laurent Condat, R. Restaino, G. Vivone, Daniele Picone, J. Chanussot
{"title":"基于协同全变分的高光谱图像绘制","authors":"P. Addesso, M. Mura, Laurent Condat, R. Restaino, G. Vivone, Daniele Picone, J. Chanussot","doi":"10.1109/ICIP.2017.8297090","DOIUrl":null,"url":null,"abstract":"Inpainting in hyperspectral imagery is a challenging research area and several methods have been recently developed to deal with this kind of data. In this paper we address missing data restoration via a convex optimization technique with regularization term based on Collaborative Total Variation (CTV). In particular we evaluate the effectiveness of several instances of CTV in conjunction with different dimensionality reduction algorithms.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Hyperspectral image inpainting based on collaborative total variation\",\"authors\":\"P. Addesso, M. Mura, Laurent Condat, R. Restaino, G. Vivone, Daniele Picone, J. Chanussot\",\"doi\":\"10.1109/ICIP.2017.8297090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inpainting in hyperspectral imagery is a challenging research area and several methods have been recently developed to deal with this kind of data. In this paper we address missing data restoration via a convex optimization technique with regularization term based on Collaborative Total Variation (CTV). In particular we evaluate the effectiveness of several instances of CTV in conjunction with different dimensionality reduction algorithms.\",\"PeriodicalId\":229602,\"journal\":{\"name\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2017.8297090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8297090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

高光谱图像的图像修复是一个具有挑战性的研究领域,近年来已经开发了几种方法来处理这类数据。本文通过一种基于协同全变分(CTV)的正则化项凸优化技术来解决缺失数据的恢复问题。特别地,我们评估了几种CTV实例与不同降维算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral image inpainting based on collaborative total variation
Inpainting in hyperspectral imagery is a challenging research area and several methods have been recently developed to deal with this kind of data. In this paper we address missing data restoration via a convex optimization technique with regularization term based on Collaborative Total Variation (CTV). In particular we evaluate the effectiveness of several instances of CTV in conjunction with different dimensionality reduction algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信