Masataro Asai, Hiroshi Kajino, A. Fukunaga, Christian Muise
{"title":"潜在空间中的符号推理:以经典规划为例","authors":"Masataro Asai, Hiroshi Kajino, A. Fukunaga, Christian Muise","doi":"10.3233/faia210349","DOIUrl":null,"url":null,"abstract":"Symbolic systems require hand-coded symbolic representation as input, resulting in a knowledge acquisition bottleneck. Meanwhile, although deep learning has achieved significant success in many fields, the knowledge is encoded in a subsymbolic representation which is incompatible with symbolic systems. To address the gap between the two fields, one has to solve Symbol Grounding problem: The question of how a machine can generate symbols automatically. We discuss our recent work called Latplan, an unsupervised architecture combining deep learning and classical planning. Given only an unlabeled set of image pairs showing a subset of transitions allowed in the environment (training inputs), Latplan learns a complete propositional PDDL action model of the environment. Later, when a pair of images representing the initial and the goal states (planning inputs) is given, Latplan finds a plan to the goal state in a symbolic latent space and returns a visualized plan execution. We discuss several key ideas that made Latplan possible which would hopefully extend to many other symbolic paradigms outside classical planning.","PeriodicalId":250200,"journal":{"name":"Neuro-Symbolic Artificial Intelligence","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symbolic Reasoning in Latent Space: Classical Planning as an Example\",\"authors\":\"Masataro Asai, Hiroshi Kajino, A. Fukunaga, Christian Muise\",\"doi\":\"10.3233/faia210349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symbolic systems require hand-coded symbolic representation as input, resulting in a knowledge acquisition bottleneck. Meanwhile, although deep learning has achieved significant success in many fields, the knowledge is encoded in a subsymbolic representation which is incompatible with symbolic systems. To address the gap between the two fields, one has to solve Symbol Grounding problem: The question of how a machine can generate symbols automatically. We discuss our recent work called Latplan, an unsupervised architecture combining deep learning and classical planning. Given only an unlabeled set of image pairs showing a subset of transitions allowed in the environment (training inputs), Latplan learns a complete propositional PDDL action model of the environment. Later, when a pair of images representing the initial and the goal states (planning inputs) is given, Latplan finds a plan to the goal state in a symbolic latent space and returns a visualized plan execution. We discuss several key ideas that made Latplan possible which would hopefully extend to many other symbolic paradigms outside classical planning.\",\"PeriodicalId\":250200,\"journal\":{\"name\":\"Neuro-Symbolic Artificial Intelligence\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-Symbolic Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/faia210349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-Symbolic Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/faia210349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Symbolic Reasoning in Latent Space: Classical Planning as an Example
Symbolic systems require hand-coded symbolic representation as input, resulting in a knowledge acquisition bottleneck. Meanwhile, although deep learning has achieved significant success in many fields, the knowledge is encoded in a subsymbolic representation which is incompatible with symbolic systems. To address the gap between the two fields, one has to solve Symbol Grounding problem: The question of how a machine can generate symbols automatically. We discuss our recent work called Latplan, an unsupervised architecture combining deep learning and classical planning. Given only an unlabeled set of image pairs showing a subset of transitions allowed in the environment (training inputs), Latplan learns a complete propositional PDDL action model of the environment. Later, when a pair of images representing the initial and the goal states (planning inputs) is given, Latplan finds a plan to the goal state in a symbolic latent space and returns a visualized plan execution. We discuss several key ideas that made Latplan possible which would hopefully extend to many other symbolic paradigms outside classical planning.