L. Igual, J. Soliva, Antonio Hernández-Vela, Sergio Escalera, Ó. Vilarroya, P. Radeva
{"title":"监督脑分割与分类在注意缺陷/多动障碍诊断中的应用","authors":"L. Igual, J. Soliva, Antonio Hernández-Vela, Sergio Escalera, Ó. Vilarroya, P. Radeva","doi":"10.1109/HPCSim.2012.6266909","DOIUrl":null,"url":null,"abstract":"This paper presents an automatic method for external and internal segmentation of the caudate nucleus in Magnetic Resonance Images (MRI) based on statistical and structural machine learning approaches. This method is applied in Attention-Deficit/Hyperactivity Disorder (ADHD) diagnosis. The external segmentation method adapts the Graph Cut energy-minimization model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus. In particular, new energy function data and boundary potentials are defined and a supervised energy term based on contextual brain structures is added. Furthermore, the internal segmentation method learns a classifier based on shape features of the Region of Interest (ROI) in MRI slices. The results show accurate external and internal caudate segmentation in a real data set and similar performance of ADHD diagnostic test to manual annotation.","PeriodicalId":428764,"journal":{"name":"2012 International Conference on High Performance Computing & Simulation (HPCS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Supervised brain segmentation and classification in diagnostic of Attention-Deficit/Hyperactivity Disorder\",\"authors\":\"L. Igual, J. Soliva, Antonio Hernández-Vela, Sergio Escalera, Ó. Vilarroya, P. Radeva\",\"doi\":\"10.1109/HPCSim.2012.6266909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an automatic method for external and internal segmentation of the caudate nucleus in Magnetic Resonance Images (MRI) based on statistical and structural machine learning approaches. This method is applied in Attention-Deficit/Hyperactivity Disorder (ADHD) diagnosis. The external segmentation method adapts the Graph Cut energy-minimization model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus. In particular, new energy function data and boundary potentials are defined and a supervised energy term based on contextual brain structures is added. Furthermore, the internal segmentation method learns a classifier based on shape features of the Region of Interest (ROI) in MRI slices. The results show accurate external and internal caudate segmentation in a real data set and similar performance of ADHD diagnostic test to manual annotation.\",\"PeriodicalId\":428764,\"journal\":{\"name\":\"2012 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCSim.2012.6266909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2012.6266909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supervised brain segmentation and classification in diagnostic of Attention-Deficit/Hyperactivity Disorder
This paper presents an automatic method for external and internal segmentation of the caudate nucleus in Magnetic Resonance Images (MRI) based on statistical and structural machine learning approaches. This method is applied in Attention-Deficit/Hyperactivity Disorder (ADHD) diagnosis. The external segmentation method adapts the Graph Cut energy-minimization model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus. In particular, new energy function data and boundary potentials are defined and a supervised energy term based on contextual brain structures is added. Furthermore, the internal segmentation method learns a classifier based on shape features of the Region of Interest (ROI) in MRI slices. The results show accurate external and internal caudate segmentation in a real data set and similar performance of ADHD diagnostic test to manual annotation.