基于线性结构张量的像素级图像融合

B. Lu, Chunli Miao, Hui Wang
{"title":"基于线性结构张量的像素级图像融合","authors":"B. Lu, Chunli Miao, Hui Wang","doi":"10.1109/YCICT.2010.5713105","DOIUrl":null,"url":null,"abstract":"A pixel-level image fusion method based on linear structure tensor is proposed within wavelet framework. Structure tensor, which describes local structure information with its eigenvalues and eigenvectors, is adopted to design a feature selection algorithm to reconstruct high-frequency wavelet coefficients of fused image. Experimental results on grayscale and color images show that the linear structure tensor based fusion scheme can preserve more details.","PeriodicalId":179847,"journal":{"name":"2010 IEEE Youth Conference on Information, Computing and Telecommunications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Pixel level image fusion based on linear structure tensor\",\"authors\":\"B. Lu, Chunli Miao, Hui Wang\",\"doi\":\"10.1109/YCICT.2010.5713105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A pixel-level image fusion method based on linear structure tensor is proposed within wavelet framework. Structure tensor, which describes local structure information with its eigenvalues and eigenvectors, is adopted to design a feature selection algorithm to reconstruct high-frequency wavelet coefficients of fused image. Experimental results on grayscale and color images show that the linear structure tensor based fusion scheme can preserve more details.\",\"PeriodicalId\":179847,\"journal\":{\"name\":\"2010 IEEE Youth Conference on Information, Computing and Telecommunications\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Youth Conference on Information, Computing and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YCICT.2010.5713105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Youth Conference on Information, Computing and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YCICT.2010.5713105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种在小波框架下基于线性结构张量的像素级图像融合方法。利用结构张量的特征值和特征向量来描述局部结构信息,设计了一种特征选择算法来重建融合图像的高频小波系数。在灰度和彩色图像上的实验结果表明,基于线性结构张量的融合方案可以保留更多的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pixel level image fusion based on linear structure tensor
A pixel-level image fusion method based on linear structure tensor is proposed within wavelet framework. Structure tensor, which describes local structure information with its eigenvalues and eigenvectors, is adopted to design a feature selection algorithm to reconstruct high-frequency wavelet coefficients of fused image. Experimental results on grayscale and color images show that the linear structure tensor based fusion scheme can preserve more details.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信