{"title":"基于注意神经网络的口语辨析","authors":"Jagabandhu Mishra, Ayush Agarwal, S. Prasanna","doi":"10.1109/NCC52529.2021.9530035","DOIUrl":null,"url":null,"abstract":"Spoken language diarization (SLD) is a task to perform automatic segmentation and labeling of the languages present in a given code-switched speech utterance. Inspiring from the way humans perform SLD (i.e capturing the language specific long term information), this work has proposed an acoustic-phonetic approach to perform SLD. This acoustic phonetic approach consists of an attention based neural network modelling to capture the language specific information and a Gaussian smoothing approach to locate the language change points. From the experimental study, it has been observed that the proposed approach performs better when dealing with code-switched segment containing monolingual segments of longer duration. However, the performance of the approach decreases with decrease in the monolingual segment duration. This issue poses a challenge in the further exploration of the proposed approach.","PeriodicalId":414087,"journal":{"name":"2021 National Conference on Communications (NCC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Spoken Language Diarization Using an Attention based Neural Network\",\"authors\":\"Jagabandhu Mishra, Ayush Agarwal, S. Prasanna\",\"doi\":\"10.1109/NCC52529.2021.9530035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spoken language diarization (SLD) is a task to perform automatic segmentation and labeling of the languages present in a given code-switched speech utterance. Inspiring from the way humans perform SLD (i.e capturing the language specific long term information), this work has proposed an acoustic-phonetic approach to perform SLD. This acoustic phonetic approach consists of an attention based neural network modelling to capture the language specific information and a Gaussian smoothing approach to locate the language change points. From the experimental study, it has been observed that the proposed approach performs better when dealing with code-switched segment containing monolingual segments of longer duration. However, the performance of the approach decreases with decrease in the monolingual segment duration. This issue poses a challenge in the further exploration of the proposed approach.\",\"PeriodicalId\":414087,\"journal\":{\"name\":\"2021 National Conference on Communications (NCC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC52529.2021.9530035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC52529.2021.9530035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spoken Language Diarization Using an Attention based Neural Network
Spoken language diarization (SLD) is a task to perform automatic segmentation and labeling of the languages present in a given code-switched speech utterance. Inspiring from the way humans perform SLD (i.e capturing the language specific long term information), this work has proposed an acoustic-phonetic approach to perform SLD. This acoustic phonetic approach consists of an attention based neural network modelling to capture the language specific information and a Gaussian smoothing approach to locate the language change points. From the experimental study, it has been observed that the proposed approach performs better when dealing with code-switched segment containing monolingual segments of longer duration. However, the performance of the approach decreases with decrease in the monolingual segment duration. This issue poses a challenge in the further exploration of the proposed approach.