{"title":"一种快速鲁棒人脸检测的神经网络结构","authors":"Christophe Garcia, M. Delakis","doi":"10.1109/ICPR.2002.1048232","DOIUrl":null,"url":null,"abstract":"In this paper, we present a connectionist approach for detecting and precisely localizing semi-frontal human faces in complex images, making no assumption about the content or the lighting conditions of the scene, or about the size or the appearance of the faces. We propose a convolutional neural network architecture designed to recognize strongly variable face patterns directly from pixel images with no preprocessing, by automatically synthesizing its own set of feature extractors from a large training set of faces. We present in details the optimized design of our architecture, our learning strategy and the resulting process of face detection. We also provide experimental results to demonstrate the robustness of our approach and its capability to precisely detect extremely variable faces in uncontrolled environments.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":"{\"title\":\"A neural architecture for fast and robust face detection\",\"authors\":\"Christophe Garcia, M. Delakis\",\"doi\":\"10.1109/ICPR.2002.1048232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a connectionist approach for detecting and precisely localizing semi-frontal human faces in complex images, making no assumption about the content or the lighting conditions of the scene, or about the size or the appearance of the faces. We propose a convolutional neural network architecture designed to recognize strongly variable face patterns directly from pixel images with no preprocessing, by automatically synthesizing its own set of feature extractors from a large training set of faces. We present in details the optimized design of our architecture, our learning strategy and the resulting process of face detection. We also provide experimental results to demonstrate the robustness of our approach and its capability to precisely detect extremely variable faces in uncontrolled environments.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"99\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A neural architecture for fast and robust face detection
In this paper, we present a connectionist approach for detecting and precisely localizing semi-frontal human faces in complex images, making no assumption about the content or the lighting conditions of the scene, or about the size or the appearance of the faces. We propose a convolutional neural network architecture designed to recognize strongly variable face patterns directly from pixel images with no preprocessing, by automatically synthesizing its own set of feature extractors from a large training set of faces. We present in details the optimized design of our architecture, our learning strategy and the resulting process of face detection. We also provide experimental results to demonstrate the robustness of our approach and its capability to precisely detect extremely variable faces in uncontrolled environments.