从具有外观和运动特征的自我中心图像中识别活动

Yanhua Chen, Mingtao Pei, Z. Nie
{"title":"从具有外观和运动特征的自我中心图像中识别活动","authors":"Yanhua Chen, Mingtao Pei, Z. Nie","doi":"10.1109/mlsp52302.2021.9596178","DOIUrl":null,"url":null,"abstract":"With the development of wearable cameras, recognizing activities from egocentric images has attracted the interest of many researchers. The motion of the camera wearer is an important cue for the activity recognition, and is either explicitly used by optical flow for videos or implicitly used by fusing several images for images. In this paper, based on the observation that the two consecutive images captured by the wearable camera contain the motion information of the camera wearer, we propose to use the camera wearer's rotation and translation computed from the two consecutive images as the motion features. The motion features are combined with appearance features extracted by a CNN as the activity features, and the activity is classified by a random decision forest. We test our method on two egocentric image datasets. The experimental results show that by adding the motion information, the accuracy of activity recognition has been significantly improved.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"28 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognizing Activities from Egocentric Images with Appearance and Motion Features\",\"authors\":\"Yanhua Chen, Mingtao Pei, Z. Nie\",\"doi\":\"10.1109/mlsp52302.2021.9596178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of wearable cameras, recognizing activities from egocentric images has attracted the interest of many researchers. The motion of the camera wearer is an important cue for the activity recognition, and is either explicitly used by optical flow for videos or implicitly used by fusing several images for images. In this paper, based on the observation that the two consecutive images captured by the wearable camera contain the motion information of the camera wearer, we propose to use the camera wearer's rotation and translation computed from the two consecutive images as the motion features. The motion features are combined with appearance features extracted by a CNN as the activity features, and the activity is classified by a random decision forest. We test our method on two egocentric image datasets. The experimental results show that by adding the motion information, the accuracy of activity recognition has been significantly improved.\",\"PeriodicalId\":156116,\"journal\":{\"name\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"28 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mlsp52302.2021.9596178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着可穿戴相机的发展,从以自我为中心的图像中识别活动已经引起了许多研究者的兴趣。相机佩戴者的运动是活动识别的重要线索,它要么被光流明确地用于视频,要么被多幅图像融合用于图像。本文基于观察到可穿戴相机捕捉到的两幅连续图像中包含了佩戴者的运动信息,我们提出利用这两幅连续图像计算出的佩戴者的旋转和平移作为运动特征。将运动特征与CNN提取的外观特征相结合作为活动特征,并通过随机决策森林对活动进行分类。我们在两个以自我为中心的图像数据集上测试我们的方法。实验结果表明,加入运动信息后,活动识别的准确率有了明显提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognizing Activities from Egocentric Images with Appearance and Motion Features
With the development of wearable cameras, recognizing activities from egocentric images has attracted the interest of many researchers. The motion of the camera wearer is an important cue for the activity recognition, and is either explicitly used by optical flow for videos or implicitly used by fusing several images for images. In this paper, based on the observation that the two consecutive images captured by the wearable camera contain the motion information of the camera wearer, we propose to use the camera wearer's rotation and translation computed from the two consecutive images as the motion features. The motion features are combined with appearance features extracted by a CNN as the activity features, and the activity is classified by a random decision forest. We test our method on two egocentric image datasets. The experimental results show that by adding the motion information, the accuracy of activity recognition has been significantly improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信