基于动态安全参数的鲁棒主机过载检测方法

Imène El-Taani, M. C. Boukala, S. Bouzefrane, Anissa Imen Amrous
{"title":"基于动态安全参数的鲁棒主机过载检测方法","authors":"Imène El-Taani, M. C. Boukala, S. Bouzefrane, Anissa Imen Amrous","doi":"10.1109/FiCloud57274.2022.00044","DOIUrl":null,"url":null,"abstract":"Host-overloading detection is an important phase in the dynamic Virtual Machines (VMs) consolidation process. Using machine learning to predict the future workload on a host, is a very promising technique to avoid the overload host situation. In this work, we propose a novel approach for overloaded hosts detection, based on neural network and Markov model. The neural network is trained on a workload data set composed of VMs CPU-utilization history. The trained model is then used to predict the future usage for a given Physical Machine(PM), by summing up the predicted utilization of all its VMs. The confidence of this prediction is measured through a dynamic safety parameter, based on Markov model. The obtained results show that our approach outperforms the state of the art algorithms such as: MAD, IQR and LRR.","PeriodicalId":349690,"journal":{"name":"2022 9th International Conference on Future Internet of Things and Cloud (FiCloud)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust approach for host-overload detection based on dynamic safety parameter\",\"authors\":\"Imène El-Taani, M. C. Boukala, S. Bouzefrane, Anissa Imen Amrous\",\"doi\":\"10.1109/FiCloud57274.2022.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Host-overloading detection is an important phase in the dynamic Virtual Machines (VMs) consolidation process. Using machine learning to predict the future workload on a host, is a very promising technique to avoid the overload host situation. In this work, we propose a novel approach for overloaded hosts detection, based on neural network and Markov model. The neural network is trained on a workload data set composed of VMs CPU-utilization history. The trained model is then used to predict the future usage for a given Physical Machine(PM), by summing up the predicted utilization of all its VMs. The confidence of this prediction is measured through a dynamic safety parameter, based on Markov model. The obtained results show that our approach outperforms the state of the art algorithms such as: MAD, IQR and LRR.\",\"PeriodicalId\":349690,\"journal\":{\"name\":\"2022 9th International Conference on Future Internet of Things and Cloud (FiCloud)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th International Conference on Future Internet of Things and Cloud (FiCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FiCloud57274.2022.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Future Internet of Things and Cloud (FiCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud57274.2022.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主机过载检测是动态虚拟机整合过程中的一个重要阶段。使用机器学习来预测主机未来的工作负载,是一种非常有前途的技术,可以避免主机过载的情况。在这项工作中,我们提出了一种基于神经网络和马尔可夫模型的过载主机检测新方法。神经网络在由虚拟机cpu使用历史数据组成的工作负载数据集上进行训练。然后使用训练好的模型来预测给定物理机(PM)的未来使用情况,方法是将所有vm的预测利用率相加。通过基于马尔可夫模型的动态安全参数来测量该预测的置信度。得到的结果表明,我们的方法优于目前最先进的算法,如:MAD, IQR和LRR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust approach for host-overload detection based on dynamic safety parameter
Host-overloading detection is an important phase in the dynamic Virtual Machines (VMs) consolidation process. Using machine learning to predict the future workload on a host, is a very promising technique to avoid the overload host situation. In this work, we propose a novel approach for overloaded hosts detection, based on neural network and Markov model. The neural network is trained on a workload data set composed of VMs CPU-utilization history. The trained model is then used to predict the future usage for a given Physical Machine(PM), by summing up the predicted utilization of all its VMs. The confidence of this prediction is measured through a dynamic safety parameter, based on Markov model. The obtained results show that our approach outperforms the state of the art algorithms such as: MAD, IQR and LRR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信