Imène El-Taani, M. C. Boukala, S. Bouzefrane, Anissa Imen Amrous
{"title":"基于动态安全参数的鲁棒主机过载检测方法","authors":"Imène El-Taani, M. C. Boukala, S. Bouzefrane, Anissa Imen Amrous","doi":"10.1109/FiCloud57274.2022.00044","DOIUrl":null,"url":null,"abstract":"Host-overloading detection is an important phase in the dynamic Virtual Machines (VMs) consolidation process. Using machine learning to predict the future workload on a host, is a very promising technique to avoid the overload host situation. In this work, we propose a novel approach for overloaded hosts detection, based on neural network and Markov model. The neural network is trained on a workload data set composed of VMs CPU-utilization history. The trained model is then used to predict the future usage for a given Physical Machine(PM), by summing up the predicted utilization of all its VMs. The confidence of this prediction is measured through a dynamic safety parameter, based on Markov model. The obtained results show that our approach outperforms the state of the art algorithms such as: MAD, IQR and LRR.","PeriodicalId":349690,"journal":{"name":"2022 9th International Conference on Future Internet of Things and Cloud (FiCloud)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust approach for host-overload detection based on dynamic safety parameter\",\"authors\":\"Imène El-Taani, M. C. Boukala, S. Bouzefrane, Anissa Imen Amrous\",\"doi\":\"10.1109/FiCloud57274.2022.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Host-overloading detection is an important phase in the dynamic Virtual Machines (VMs) consolidation process. Using machine learning to predict the future workload on a host, is a very promising technique to avoid the overload host situation. In this work, we propose a novel approach for overloaded hosts detection, based on neural network and Markov model. The neural network is trained on a workload data set composed of VMs CPU-utilization history. The trained model is then used to predict the future usage for a given Physical Machine(PM), by summing up the predicted utilization of all its VMs. The confidence of this prediction is measured through a dynamic safety parameter, based on Markov model. The obtained results show that our approach outperforms the state of the art algorithms such as: MAD, IQR and LRR.\",\"PeriodicalId\":349690,\"journal\":{\"name\":\"2022 9th International Conference on Future Internet of Things and Cloud (FiCloud)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th International Conference on Future Internet of Things and Cloud (FiCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FiCloud57274.2022.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Future Internet of Things and Cloud (FiCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud57274.2022.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust approach for host-overload detection based on dynamic safety parameter
Host-overloading detection is an important phase in the dynamic Virtual Machines (VMs) consolidation process. Using machine learning to predict the future workload on a host, is a very promising technique to avoid the overload host situation. In this work, we propose a novel approach for overloaded hosts detection, based on neural network and Markov model. The neural network is trained on a workload data set composed of VMs CPU-utilization history. The trained model is then used to predict the future usage for a given Physical Machine(PM), by summing up the predicted utilization of all its VMs. The confidence of this prediction is measured through a dynamic safety parameter, based on Markov model. The obtained results show that our approach outperforms the state of the art algorithms such as: MAD, IQR and LRR.