数据融合在遥感影像土地覆盖分类中的应用:一种神经网络方法

A. Chiuderi, S. Fini, V. Cappellini
{"title":"数据融合在遥感影像土地覆盖分类中的应用:一种神经网络方法","authors":"A. Chiuderi, S. Fini, V. Cappellini","doi":"10.1109/MFI.1994.398379","DOIUrl":null,"url":null,"abstract":"This paper focuses on the possibilities offered by neural networks applied to multisensor image data processing. The great number of existing and planned instruments for Earth observation (satellites, sensors) highlights the need of specific techniques for processing, and, in particular, for merging, the large amount of data that will be available in future years. Moreover emphasis is given to the importance of fusing data acquired by sensors operating in different regions of the electromagnetic spectrum. Neural networks (NNs) are employed to perform fusion of TM data with SAR data in order to obtain a landcover classification of an agricultural area in the surroundings of Florence (Italy). Two different architectures of NN are presented and employed, the counterpropagation network and the Kohonen map; the results obtained in both cases are reported and discussed.<<ETX>>","PeriodicalId":133630,"journal":{"name":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"An application of data fusion to landcover classification of remote sensed imagery: a neural network approach\",\"authors\":\"A. Chiuderi, S. Fini, V. Cappellini\",\"doi\":\"10.1109/MFI.1994.398379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the possibilities offered by neural networks applied to multisensor image data processing. The great number of existing and planned instruments for Earth observation (satellites, sensors) highlights the need of specific techniques for processing, and, in particular, for merging, the large amount of data that will be available in future years. Moreover emphasis is given to the importance of fusing data acquired by sensors operating in different regions of the electromagnetic spectrum. Neural networks (NNs) are employed to perform fusion of TM data with SAR data in order to obtain a landcover classification of an agricultural area in the surroundings of Florence (Italy). Two different architectures of NN are presented and employed, the counterpropagation network and the Kohonen map; the results obtained in both cases are reported and discussed.<<ETX>>\",\"PeriodicalId\":133630,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.1994.398379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on MFI '94. Multisensor Fusion and Integration for Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.1994.398379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文重点介绍了神经网络应用于多传感器图像数据处理的可能性。大量现有的和计划中的地球观测仪器(卫星、传感器)突出表明需要具体的技术来处理,特别是合并未来几年将得到的大量数据。此外,还强调了在不同电磁波谱区域工作的传感器所获得的数据融合的重要性。利用神经网络(Neural networks, NNs)对TM数据与SAR数据进行融合,得到意大利佛罗伦萨周边农业区的土地覆被分类。提出并应用了两种不同的神经网络结构:反传播网络和Kohonen映射;本文报道并讨论了这两种情况的结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An application of data fusion to landcover classification of remote sensed imagery: a neural network approach
This paper focuses on the possibilities offered by neural networks applied to multisensor image data processing. The great number of existing and planned instruments for Earth observation (satellites, sensors) highlights the need of specific techniques for processing, and, in particular, for merging, the large amount of data that will be available in future years. Moreover emphasis is given to the importance of fusing data acquired by sensors operating in different regions of the electromagnetic spectrum. Neural networks (NNs) are employed to perform fusion of TM data with SAR data in order to obtain a landcover classification of an agricultural area in the surroundings of Florence (Italy). Two different architectures of NN are presented and employed, the counterpropagation network and the Kohonen map; the results obtained in both cases are reported and discussed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信