N. Chaudhari, Aruna Tiwari, Urjita Thakar, Jaya Thomas
{"title":"网络入侵检测系统的半监督分类","authors":"N. Chaudhari, Aruna Tiwari, Urjita Thakar, Jaya Thomas","doi":"10.1109/ICCIS.2010.5518571","DOIUrl":null,"url":null,"abstract":"We propose a semi supervised classifier for intrusion detection. In our approach, we classify the data entering the computer network. To achieve this, we start with two broad classes of data namely, malicious data and good data. We use Support vector machine based classifier with spherical decision boundaries to classify a chosen subset of malicious data taken as training samples. In the Intrusion Detection System (IDS) database, all data identified as malicious data according to our classifier is included as signature (of attack). Using our classifier for testing the out-of-sample data samples, we observe that the accuracy of the system is 72% for web log data.","PeriodicalId":445473,"journal":{"name":"2010 IEEE Conference on Cybernetics and Intelligent Systems","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semi-supervised classification for intrusion Detection System in networks\",\"authors\":\"N. Chaudhari, Aruna Tiwari, Urjita Thakar, Jaya Thomas\",\"doi\":\"10.1109/ICCIS.2010.5518571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a semi supervised classifier for intrusion detection. In our approach, we classify the data entering the computer network. To achieve this, we start with two broad classes of data namely, malicious data and good data. We use Support vector machine based classifier with spherical decision boundaries to classify a chosen subset of malicious data taken as training samples. In the Intrusion Detection System (IDS) database, all data identified as malicious data according to our classifier is included as signature (of attack). Using our classifier for testing the out-of-sample data samples, we observe that the accuracy of the system is 72% for web log data.\",\"PeriodicalId\":445473,\"journal\":{\"name\":\"2010 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2010.5518571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.5518571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semi-supervised classification for intrusion Detection System in networks
We propose a semi supervised classifier for intrusion detection. In our approach, we classify the data entering the computer network. To achieve this, we start with two broad classes of data namely, malicious data and good data. We use Support vector machine based classifier with spherical decision boundaries to classify a chosen subset of malicious data taken as training samples. In the Intrusion Detection System (IDS) database, all data identified as malicious data according to our classifier is included as signature (of attack). Using our classifier for testing the out-of-sample data samples, we observe that the accuracy of the system is 72% for web log data.