破产预测:一些统计和机器学习技术的比较

Tonatiuh Pena Centeno, Serafin Martinez Jaramillo, Bolanle Abudu
{"title":"破产预测:一些统计和机器学习技术的比较","authors":"Tonatiuh Pena Centeno, Serafin Martinez Jaramillo, Bolanle Abudu","doi":"10.2139/ssrn.1525947","DOIUrl":null,"url":null,"abstract":"We are interested in forecasting bankruptcies in a probabilistic way. Specifically, we compare the classification performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and different instances of Gaussian processes (GP's) -that is GP's classifiers, Bayesian Fisher discriminant and Warped GP's. Our contribution to the field of computational finance is to introduce GP's as a potentially competitive probabilistic framework for bankruptcy prediction. Data from the repository of information of the US Federal Deposit Insurance Corporation is used to test the predictions.","PeriodicalId":207453,"journal":{"name":"ERN: Econometric Modeling in Microeconomics (Topic)","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Bankruptcy Prediction: A Comparison of Some Statistical and Machine Learning Techniques\",\"authors\":\"Tonatiuh Pena Centeno, Serafin Martinez Jaramillo, Bolanle Abudu\",\"doi\":\"10.2139/ssrn.1525947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are interested in forecasting bankruptcies in a probabilistic way. Specifically, we compare the classification performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and different instances of Gaussian processes (GP's) -that is GP's classifiers, Bayesian Fisher discriminant and Warped GP's. Our contribution to the field of computational finance is to introduce GP's as a potentially competitive probabilistic framework for bankruptcy prediction. Data from the repository of information of the US Federal Deposit Insurance Corporation is used to test the predictions.\",\"PeriodicalId\":207453,\"journal\":{\"name\":\"ERN: Econometric Modeling in Microeconomics (Topic)\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Econometric Modeling in Microeconomics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1525947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Econometric Modeling in Microeconomics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1525947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们感兴趣的是以概率的方式预测破产。具体来说,我们比较了几种统计和机器学习技术的分类性能,即判别分析(Altman的z分数),逻辑回归,最小二乘支持向量机和高斯过程(GP)的不同实例- GP的分类器,贝叶斯费雪判别器和Warped GP。我们对计算金融领域的贡献是引入GP作为破产预测的潜在竞争概率框架。来自美国联邦存款保险公司信息库的数据被用来检验这些预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bankruptcy Prediction: A Comparison of Some Statistical and Machine Learning Techniques
We are interested in forecasting bankruptcies in a probabilistic way. Specifically, we compare the classification performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and different instances of Gaussian processes (GP's) -that is GP's classifiers, Bayesian Fisher discriminant and Warped GP's. Our contribution to the field of computational finance is to introduce GP's as a potentially competitive probabilistic framework for bankruptcy prediction. Data from the repository of information of the US Federal Deposit Insurance Corporation is used to test the predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信