预测国际贸易:时间序列方法

Alexander Keck, Alexander Raubold, A. Truppia
{"title":"预测国际贸易:时间序列方法","authors":"Alexander Keck, Alexander Raubold, A. Truppia","doi":"10.1787/JBCMA-2009-5KS9V44BDJ32","DOIUrl":null,"url":null,"abstract":"This paper develops a time series model to forecast the growth in imports by major advanced economies in the current and following year (two to six quarters ahead). Both pure time series analysis and structural approaches that include additional predictors based on economic theory are used. Our results compare favourably with other trade forecasts, as measured by standard evaluation statistics and can serve as a benchmark for more complex macroeconomic models.","PeriodicalId":313514,"journal":{"name":"Oecd Journal: Journal of Business Cycle Measurement and Analysis","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Forecasting international trade: A time series approach\",\"authors\":\"Alexander Keck, Alexander Raubold, A. Truppia\",\"doi\":\"10.1787/JBCMA-2009-5KS9V44BDJ32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a time series model to forecast the growth in imports by major advanced economies in the current and following year (two to six quarters ahead). Both pure time series analysis and structural approaches that include additional predictors based on economic theory are used. Our results compare favourably with other trade forecasts, as measured by standard evaluation statistics and can serve as a benchmark for more complex macroeconomic models.\",\"PeriodicalId\":313514,\"journal\":{\"name\":\"Oecd Journal: Journal of Business Cycle Measurement and Analysis\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oecd Journal: Journal of Business Cycle Measurement and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1787/JBCMA-2009-5KS9V44BDJ32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecd Journal: Journal of Business Cycle Measurement and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1787/JBCMA-2009-5KS9V44BDJ32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文开发了一个时间序列模型来预测主要发达经济体在当前和未来一年(未来两到六个季度)的进口增长。使用纯时间序列分析和结构方法,其中包括基于经济理论的额外预测因子。我们的结果与其他贸易预测相比是有利的,通过标准评估统计来衡量,可以作为更复杂的宏观经济模型的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting international trade: A time series approach
This paper develops a time series model to forecast the growth in imports by major advanced economies in the current and following year (two to six quarters ahead). Both pure time series analysis and structural approaches that include additional predictors based on economic theory are used. Our results compare favourably with other trade forecasts, as measured by standard evaluation statistics and can serve as a benchmark for more complex macroeconomic models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信