{"title":"Dehn捻幂映射类群商及其表示","authors":"L. Funar","doi":"10.4171/irma/33-1/15","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to survey some known results about mapping class group quotients by powers of Dehn twists, related to their finite dimensional representations and to state some open questions. One can construct finite quotients of them, out of representations with Zariski dense images into semisimple Lie groups. We show that, in genus 2, the Fibonacci TQFT representation is actually a specialization of the Jones representation. Eventually, we explain a method of Long and Moody which provides large families of mapping class group representations.","PeriodicalId":270093,"journal":{"name":"Topology and Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On mapping class group quotients by powers of Dehn twists and their representations\",\"authors\":\"L. Funar\",\"doi\":\"10.4171/irma/33-1/15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to survey some known results about mapping class group quotients by powers of Dehn twists, related to their finite dimensional representations and to state some open questions. One can construct finite quotients of them, out of representations with Zariski dense images into semisimple Lie groups. We show that, in genus 2, the Fibonacci TQFT representation is actually a specialization of the Jones representation. Eventually, we explain a method of Long and Moody which provides large families of mapping class group representations.\",\"PeriodicalId\":270093,\"journal\":{\"name\":\"Topology and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/irma/33-1/15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/irma/33-1/15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On mapping class group quotients by powers of Dehn twists and their representations
The aim of this paper is to survey some known results about mapping class group quotients by powers of Dehn twists, related to their finite dimensional representations and to state some open questions. One can construct finite quotients of them, out of representations with Zariski dense images into semisimple Lie groups. We show that, in genus 2, the Fibonacci TQFT representation is actually a specialization of the Jones representation. Eventually, we explain a method of Long and Moody which provides large families of mapping class group representations.