Dehn捻幂映射类群商及其表示

L. Funar
{"title":"Dehn捻幂映射类群商及其表示","authors":"L. Funar","doi":"10.4171/irma/33-1/15","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to survey some known results about mapping class group quotients by powers of Dehn twists, related to their finite dimensional representations and to state some open questions. One can construct finite quotients of them, out of representations with Zariski dense images into semisimple Lie groups. We show that, in genus 2, the Fibonacci TQFT representation is actually a specialization of the Jones representation. Eventually, we explain a method of Long and Moody which provides large families of mapping class group representations.","PeriodicalId":270093,"journal":{"name":"Topology and Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On mapping class group quotients by powers of Dehn twists and their representations\",\"authors\":\"L. Funar\",\"doi\":\"10.4171/irma/33-1/15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to survey some known results about mapping class group quotients by powers of Dehn twists, related to their finite dimensional representations and to state some open questions. One can construct finite quotients of them, out of representations with Zariski dense images into semisimple Lie groups. We show that, in genus 2, the Fibonacci TQFT representation is actually a specialization of the Jones representation. Eventually, we explain a method of Long and Moody which provides large families of mapping class group representations.\",\"PeriodicalId\":270093,\"journal\":{\"name\":\"Topology and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/irma/33-1/15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/irma/33-1/15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是综述一些已知的关于用Dehn扭转幂映射类群商的结果,这些结果与它们的有限维表示有关,并说明一些有待解决的问题。我们可以将它们的有限商,从Zariski密集象的表示构造成半单李群。我们表明,在属2中,斐波那契TQFT表示实际上是琼斯表示的专门化。最后,我们解释了Long和Moody的一种方法,它提供了大族的映射类群表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On mapping class group quotients by powers of Dehn twists and their representations
The aim of this paper is to survey some known results about mapping class group quotients by powers of Dehn twists, related to their finite dimensional representations and to state some open questions. One can construct finite quotients of them, out of representations with Zariski dense images into semisimple Lie groups. We show that, in genus 2, the Fibonacci TQFT representation is actually a specialization of the Jones representation. Eventually, we explain a method of Long and Moody which provides large families of mapping class group representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信