{"title":"基于稀疏性重构协方差矩阵的自适应波束形成","authors":"Yujie Gu, N. Goodman, Yimin D. Zhang","doi":"10.1017/9781108552653.009","DOIUrl":null,"url":null,"abstract":"Traditional adaptive beamformers are very sensitive to model mismatch, especially when the training samples for adaptive beamformer design are contaminated by the desired signal. In this chapter, we reconstruct a signal-free interference-plus-noise covariance matrix for adaptive beamformer design. Exploiting the sparsity of sources, the interference covariance matrix can be reconstructed as a weighted sum of the outer products of the interference steering vectors, and the corresponding parameters can be estimated from a sparsityconstrained covariance matrix fitting problem. In contrast to classical compressive sensing and sparse reconstruction techniques, the sparsity-constrained covariance matrix fitting problem can be effectively solved as a modified least squares solution by using the a priori information on the array structure. Extensive simulation results demonstrate that the proposed adaptive beamformer almost always provides the near-optimal output performance regardless of the input signal power.","PeriodicalId":251232,"journal":{"name":"Compressed Sensing in Radar Signal Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive Beamforming via Sparsity-Based Reconstruction of Covariance Matrix\",\"authors\":\"Yujie Gu, N. Goodman, Yimin D. Zhang\",\"doi\":\"10.1017/9781108552653.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional adaptive beamformers are very sensitive to model mismatch, especially when the training samples for adaptive beamformer design are contaminated by the desired signal. In this chapter, we reconstruct a signal-free interference-plus-noise covariance matrix for adaptive beamformer design. Exploiting the sparsity of sources, the interference covariance matrix can be reconstructed as a weighted sum of the outer products of the interference steering vectors, and the corresponding parameters can be estimated from a sparsityconstrained covariance matrix fitting problem. In contrast to classical compressive sensing and sparse reconstruction techniques, the sparsity-constrained covariance matrix fitting problem can be effectively solved as a modified least squares solution by using the a priori information on the array structure. Extensive simulation results demonstrate that the proposed adaptive beamformer almost always provides the near-optimal output performance regardless of the input signal power.\",\"PeriodicalId\":251232,\"journal\":{\"name\":\"Compressed Sensing in Radar Signal Processing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compressed Sensing in Radar Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108552653.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compressed Sensing in Radar Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108552653.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Beamforming via Sparsity-Based Reconstruction of Covariance Matrix
Traditional adaptive beamformers are very sensitive to model mismatch, especially when the training samples for adaptive beamformer design are contaminated by the desired signal. In this chapter, we reconstruct a signal-free interference-plus-noise covariance matrix for adaptive beamformer design. Exploiting the sparsity of sources, the interference covariance matrix can be reconstructed as a weighted sum of the outer products of the interference steering vectors, and the corresponding parameters can be estimated from a sparsityconstrained covariance matrix fitting problem. In contrast to classical compressive sensing and sparse reconstruction techniques, the sparsity-constrained covariance matrix fitting problem can be effectively solved as a modified least squares solution by using the a priori information on the array structure. Extensive simulation results demonstrate that the proposed adaptive beamformer almost always provides the near-optimal output performance regardless of the input signal power.