基于小波的医学图像混合压缩

Fadia Shah, Jianping Li, Wang Zhou, Jalaluddin Khan, F. Shah, Y. Shah
{"title":"基于小波的医学图像混合压缩","authors":"Fadia Shah, Jianping Li, Wang Zhou, Jalaluddin Khan, F. Shah, Y. Shah","doi":"10.1109/ICCWAMTIP.2018.8632612","DOIUrl":null,"url":null,"abstract":"Scientific studies have extended the Medical Big Data (MBD)collection from numerous sources. Huge MBD needs more storage space. The traditional database management systems were obsolete and they cannot support reliable MBD processing. Usually two types of compression schemes were used to reduce the MBD size. This paper presents a hybrid compression approach for medical big data for size reduction. This also guarantees MBD quality and image reliability.","PeriodicalId":117919,"journal":{"name":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"113 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid Compression of Medical Images with Wavelets\",\"authors\":\"Fadia Shah, Jianping Li, Wang Zhou, Jalaluddin Khan, F. Shah, Y. Shah\",\"doi\":\"10.1109/ICCWAMTIP.2018.8632612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific studies have extended the Medical Big Data (MBD)collection from numerous sources. Huge MBD needs more storage space. The traditional database management systems were obsolete and they cannot support reliable MBD processing. Usually two types of compression schemes were used to reduce the MBD size. This paper presents a hybrid compression approach for medical big data for size reduction. This also guarantees MBD quality and image reliability.\",\"PeriodicalId\":117919,\"journal\":{\"name\":\"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"volume\":\"113 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2018.8632612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2018.8632612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

科学研究已经从许多来源扩展了医疗大数据(MBD)收集。巨大的MBD需要更多的存储空间。传统的数据库管理系统已经过时,无法支持可靠的MBD处理。通常使用两种类型的压缩方案来减小MBD大小。提出了一种用于医疗大数据压缩的混合压缩方法。这也保证了MBD的质量和图像的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Compression of Medical Images with Wavelets
Scientific studies have extended the Medical Big Data (MBD)collection from numerous sources. Huge MBD needs more storage space. The traditional database management systems were obsolete and they cannot support reliable MBD processing. Usually two types of compression schemes were used to reduce the MBD size. This paper presents a hybrid compression approach for medical big data for size reduction. This also guarantees MBD quality and image reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信