寻找具有代表性的风力发电情景及其随机模型的概率

J. Sumaili, H. Keko, Vladimiro Miranda, Zhi Zhou, A. Botterud, Jianhui Wang
{"title":"寻找具有代表性的风力发电情景及其随机模型的概率","authors":"J. Sumaili, H. Keko, Vladimiro Miranda, Zhi Zhou, A. Botterud, Jianhui Wang","doi":"10.1109/ISAP.2011.6082195","DOIUrl":null,"url":null,"abstract":"This paper analyzes the application of clustering techniques for wind power scenario reduction. The results have shown the unimodal structure of the scenario generated under a Monte Carlo process. The unimodal structure has been confirmed by the modes found by the information theoretic learning mean shift algorithm. The paper also presents a new technique able to represent the wind power forecasting uncertainty by a set of representative scenarios capable of characterizing the probability density function of the wind power forecast. From an initial large set of sampled scenarios, a reduced discrete set of representative scenarios associated with a probability of occurrence can be created finding the areas of high probability density. This will allow the reduction of the computational burden in stochastic models that require scenario representation.","PeriodicalId":424662,"journal":{"name":"2011 16th International Conference on Intelligent System Applications to Power Systems","volume":"186 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Finding representative wind power scenarios and their probabilities for stochastic models\",\"authors\":\"J. Sumaili, H. Keko, Vladimiro Miranda, Zhi Zhou, A. Botterud, Jianhui Wang\",\"doi\":\"10.1109/ISAP.2011.6082195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the application of clustering techniques for wind power scenario reduction. The results have shown the unimodal structure of the scenario generated under a Monte Carlo process. The unimodal structure has been confirmed by the modes found by the information theoretic learning mean shift algorithm. The paper also presents a new technique able to represent the wind power forecasting uncertainty by a set of representative scenarios capable of characterizing the probability density function of the wind power forecast. From an initial large set of sampled scenarios, a reduced discrete set of representative scenarios associated with a probability of occurrence can be created finding the areas of high probability density. This will allow the reduction of the computational burden in stochastic models that require scenario representation.\",\"PeriodicalId\":424662,\"journal\":{\"name\":\"2011 16th International Conference on Intelligent System Applications to Power Systems\",\"volume\":\"186 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 16th International Conference on Intelligent System Applications to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2011.6082195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 16th International Conference on Intelligent System Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2011.6082195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

本文分析了聚类技术在风电情景还原中的应用。结果显示了在蒙特卡罗过程下生成的场景的单峰结构。利用信息论学习均值移位算法找到的模态证实了单峰结构。本文还提出了一种用一组能够表征风电预测概率密度函数的代表性情景来表示风电预测不确定性的新技术。从初始的大量采样场景中,可以创建与发生概率相关的代表性场景的简化离散集,以找到高概率密度的区域。这将允许减少需要场景表示的随机模型的计算负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding representative wind power scenarios and their probabilities for stochastic models
This paper analyzes the application of clustering techniques for wind power scenario reduction. The results have shown the unimodal structure of the scenario generated under a Monte Carlo process. The unimodal structure has been confirmed by the modes found by the information theoretic learning mean shift algorithm. The paper also presents a new technique able to represent the wind power forecasting uncertainty by a set of representative scenarios capable of characterizing the probability density function of the wind power forecast. From an initial large set of sampled scenarios, a reduced discrete set of representative scenarios associated with a probability of occurrence can be created finding the areas of high probability density. This will allow the reduction of the computational burden in stochastic models that require scenario representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信