词嵌入和主题建模增强了在线论坛中内容链接和论点/情感标记的多个特征

Lei Li, Liyuan Mao, Moye Chen
{"title":"词嵌入和主题建模增强了在线论坛中内容链接和论点/情感标记的多个特征","authors":"Lei Li, Liyuan Mao, Moye Chen","doi":"10.18653/v1/W17-1005","DOIUrl":null,"url":null,"abstract":"Multiple grammatical and semantic features are adopted in content linking and argument/sentiment labeling for online forums in this paper. There are mainly two different methods for content linking. First, we utilize the deep feature obtained from Word Embedding Model in deep learning and compute sentence similarity. Second, we use multiple traditional features to locate candidate linking sentences, and then adopt a voting method to obtain the final result. LDA topic modeling is used to mine latent semantic feature and K-means clustering is implemented for argument labeling, while features from sentiment dictionaries and rule-based sentiment analysis are integrated for sentiment labeling. Experimental results have shown that our methods are valid.","PeriodicalId":113878,"journal":{"name":"MultiLing@EACL","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Word Embedding and Topic Modeling Enhanced Multiple Features for Content Linking and Argument / Sentiment Labeling in Online Forums\",\"authors\":\"Lei Li, Liyuan Mao, Moye Chen\",\"doi\":\"10.18653/v1/W17-1005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple grammatical and semantic features are adopted in content linking and argument/sentiment labeling for online forums in this paper. There are mainly two different methods for content linking. First, we utilize the deep feature obtained from Word Embedding Model in deep learning and compute sentence similarity. Second, we use multiple traditional features to locate candidate linking sentences, and then adopt a voting method to obtain the final result. LDA topic modeling is used to mine latent semantic feature and K-means clustering is implemented for argument labeling, while features from sentiment dictionaries and rule-based sentiment analysis are integrated for sentiment labeling. Experimental results have shown that our methods are valid.\",\"PeriodicalId\":113878,\"journal\":{\"name\":\"MultiLing@EACL\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MultiLing@EACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W17-1005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MultiLing@EACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-1005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文在网络论坛的内容链接和论点/情感标注中采用了多种语法和语义特征。主要有两种不同的内容链接方法。首先,我们利用从词嵌入模型中获得的深度特征进行深度学习,计算句子相似度。其次,我们使用多个传统特征来定位候选连接句,然后采用投票的方法获得最终结果。利用LDA主题建模挖掘潜在语义特征,利用K-means聚类实现参数标注,结合情感词典特征和基于规则的情感分析特征进行情感标注。实验结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Word Embedding and Topic Modeling Enhanced Multiple Features for Content Linking and Argument / Sentiment Labeling in Online Forums
Multiple grammatical and semantic features are adopted in content linking and argument/sentiment labeling for online forums in this paper. There are mainly two different methods for content linking. First, we utilize the deep feature obtained from Word Embedding Model in deep learning and compute sentence similarity. Second, we use multiple traditional features to locate candidate linking sentences, and then adopt a voting method to obtain the final result. LDA topic modeling is used to mine latent semantic feature and K-means clustering is implemented for argument labeling, while features from sentiment dictionaries and rule-based sentiment analysis are integrated for sentiment labeling. Experimental results have shown that our methods are valid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信