{"title":"应用于光伏级奇克拉尔斯基硅的高效电池结构和工艺","authors":"J. Gee, R. King, K. Mitchell","doi":"10.1109/PVSC.1996.564030","DOIUrl":null,"url":null,"abstract":"We performed a detailed study to examine the limiting performance available using \"photovoltaic-grade\" Cz silicon. Photovoltaic-grade silicon refers to silicon produced by the photovoltaic industry, which may differ from the silicon used in the semiconductor device industry in impurity and defect concentrations. The study included optimization of fabrication processes, development of advanced device structures, and detailed model calculations to project future performance improvements. Process and device optimization resulted in demonstration of 75-/spl mu/s bulk lifetimes and 17.6% efficient large-area cells using photovoltaic-grade Cz silicon. Detailed calculations based on the material and device evaluation of the present work project efficiencies of 20% for photovoltaic-grade Cz silicon with properly optimized processing and device structures.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"High-efficiency cell structures and processes applied to photovoltaic-grade Czochralski silicon\",\"authors\":\"J. Gee, R. King, K. Mitchell\",\"doi\":\"10.1109/PVSC.1996.564030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We performed a detailed study to examine the limiting performance available using \\\"photovoltaic-grade\\\" Cz silicon. Photovoltaic-grade silicon refers to silicon produced by the photovoltaic industry, which may differ from the silicon used in the semiconductor device industry in impurity and defect concentrations. The study included optimization of fabrication processes, development of advanced device structures, and detailed model calculations to project future performance improvements. Process and device optimization resulted in demonstration of 75-/spl mu/s bulk lifetimes and 17.6% efficient large-area cells using photovoltaic-grade Cz silicon. Detailed calculations based on the material and device evaluation of the present work project efficiencies of 20% for photovoltaic-grade Cz silicon with properly optimized processing and device structures.\",\"PeriodicalId\":410394,\"journal\":{\"name\":\"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.1996.564030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1996.564030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-efficiency cell structures and processes applied to photovoltaic-grade Czochralski silicon
We performed a detailed study to examine the limiting performance available using "photovoltaic-grade" Cz silicon. Photovoltaic-grade silicon refers to silicon produced by the photovoltaic industry, which may differ from the silicon used in the semiconductor device industry in impurity and defect concentrations. The study included optimization of fabrication processes, development of advanced device structures, and detailed model calculations to project future performance improvements. Process and device optimization resulted in demonstration of 75-/spl mu/s bulk lifetimes and 17.6% efficient large-area cells using photovoltaic-grade Cz silicon. Detailed calculations based on the material and device evaluation of the present work project efficiencies of 20% for photovoltaic-grade Cz silicon with properly optimized processing and device structures.