P. Payandehnia, B. Forouzandeh, A. Abbasfar, S. Sheikhaei, K. Nanbakhsh
{"title":"一个12.5Gb/s基于有源电感的I/O应用发射机","authors":"P. Payandehnia, B. Forouzandeh, A. Abbasfar, S. Sheikhaei, K. Nanbakhsh","doi":"10.1109/ECCTD.2011.6043313","DOIUrl":null,"url":null,"abstract":"This paper presents an improved PMOS-based active inductor circuit suitable for output driver in wireline link transmitters. Wider tuning range and higher inductive impedance in the desired bandwidth with respect to a previous reported topology is achieved using a varactor in the active inductor architecture and modifying the feedback resistor. Using the proposed active inductor, a prototype output driver for a wireline transmitter is designed in a 90nm CMOS technology. To model nonidealities of the active-inductor that affects the transmitter performance, an accurate large-signal, wide-band characterization technique, based on Least Square Estimation is described. Amplification of high frequency components of 10 Gb/s and 12.5 Gb/s transmitted signals over two kinds of NELCO channels using active inductors in the transmitter side, improves SNDR in the receiver side by 3 dB, as compared to the case with no inductor peaking, for the same power consumption. The transmitter circuit consumes 8.4 mW from a 1.2V power supply.","PeriodicalId":126960,"journal":{"name":"2011 20th European Conference on Circuit Theory and Design (ECCTD)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A 12.5Gb/s active-inductor based transmitter for I/O applications\",\"authors\":\"P. Payandehnia, B. Forouzandeh, A. Abbasfar, S. Sheikhaei, K. Nanbakhsh\",\"doi\":\"10.1109/ECCTD.2011.6043313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved PMOS-based active inductor circuit suitable for output driver in wireline link transmitters. Wider tuning range and higher inductive impedance in the desired bandwidth with respect to a previous reported topology is achieved using a varactor in the active inductor architecture and modifying the feedback resistor. Using the proposed active inductor, a prototype output driver for a wireline transmitter is designed in a 90nm CMOS technology. To model nonidealities of the active-inductor that affects the transmitter performance, an accurate large-signal, wide-band characterization technique, based on Least Square Estimation is described. Amplification of high frequency components of 10 Gb/s and 12.5 Gb/s transmitted signals over two kinds of NELCO channels using active inductors in the transmitter side, improves SNDR in the receiver side by 3 dB, as compared to the case with no inductor peaking, for the same power consumption. The transmitter circuit consumes 8.4 mW from a 1.2V power supply.\",\"PeriodicalId\":126960,\"journal\":{\"name\":\"2011 20th European Conference on Circuit Theory and Design (ECCTD)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 20th European Conference on Circuit Theory and Design (ECCTD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCTD.2011.6043313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 20th European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2011.6043313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 12.5Gb/s active-inductor based transmitter for I/O applications
This paper presents an improved PMOS-based active inductor circuit suitable for output driver in wireline link transmitters. Wider tuning range and higher inductive impedance in the desired bandwidth with respect to a previous reported topology is achieved using a varactor in the active inductor architecture and modifying the feedback resistor. Using the proposed active inductor, a prototype output driver for a wireline transmitter is designed in a 90nm CMOS technology. To model nonidealities of the active-inductor that affects the transmitter performance, an accurate large-signal, wide-band characterization technique, based on Least Square Estimation is described. Amplification of high frequency components of 10 Gb/s and 12.5 Gb/s transmitted signals over two kinds of NELCO channels using active inductors in the transmitter side, improves SNDR in the receiver side by 3 dB, as compared to the case with no inductor peaking, for the same power consumption. The transmitter circuit consumes 8.4 mW from a 1.2V power supply.