{"title":"非编码RNA基因发现的联合协方差模型","authors":"Wenbo Jiang, K. Wiese","doi":"10.1109/CIBCB.2011.5948474","DOIUrl":null,"url":null,"abstract":"The use of covariance models in finding non-coding RNA gene members in genome sequence databases has been shown quite effective in many studies. However, it has a significant drawback, which is the very large computational burden. A combined covariance model is proposed to reduce the search complexity when a genome sequence is searched for more than one ncRNA gene family. The covariance models that are combined are selected using a hierarchical clustering algorithm. This study shows that when a small number of original covariance models are combined, the combined covariance model can find members from all original ncRNA families thus successfully reducing the search time.","PeriodicalId":395505,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Combined covariance model for non-coding RNA gene finding\",\"authors\":\"Wenbo Jiang, K. Wiese\",\"doi\":\"10.1109/CIBCB.2011.5948474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of covariance models in finding non-coding RNA gene members in genome sequence databases has been shown quite effective in many studies. However, it has a significant drawback, which is the very large computational burden. A combined covariance model is proposed to reduce the search complexity when a genome sequence is searched for more than one ncRNA gene family. The covariance models that are combined are selected using a hierarchical clustering algorithm. This study shows that when a small number of original covariance models are combined, the combined covariance model can find members from all original ncRNA families thus successfully reducing the search time.\",\"PeriodicalId\":395505,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2011.5948474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2011.5948474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combined covariance model for non-coding RNA gene finding
The use of covariance models in finding non-coding RNA gene members in genome sequence databases has been shown quite effective in many studies. However, it has a significant drawback, which is the very large computational burden. A combined covariance model is proposed to reduce the search complexity when a genome sequence is searched for more than one ncRNA gene family. The covariance models that are combined are selected using a hierarchical clustering algorithm. This study shows that when a small number of original covariance models are combined, the combined covariance model can find members from all original ncRNA families thus successfully reducing the search time.