基于结构化学习的伙伴机器人轨迹生成与积累

Y. Nojima, N. Kubota, F. Kojima
{"title":"基于结构化学习的伙伴机器人轨迹生成与积累","authors":"Y. Nojima, N. Kubota, F. Kojima","doi":"10.1109/CEC.2004.1331173","DOIUrl":null,"url":null,"abstract":"The aim of This work is to develop partner robots that can obtain and accumulate human-friendly behaviors. To realize it, we use a concept of structured learning which emphasizes the importance of an interactive learning of several modules through interaction with its environment. In a proposed method, a robot obtains hand-to-hand behavior by using an interactive evolutionary computation based on human evaluations estimated by fuzzy state-value functions. Moreover, a self-organizing map is used for clustering human hand positions. A state-value function and a knowledge database are assigned to each clustered positions. Furthermore, the best trajectory is stored in the knowledge database to reuse it in the same situation. Some experimental results show the effectiveness of the proposed method.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Trajectory generation and accumulation for partner robots based on structured learning\",\"authors\":\"Y. Nojima, N. Kubota, F. Kojima\",\"doi\":\"10.1109/CEC.2004.1331173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of This work is to develop partner robots that can obtain and accumulate human-friendly behaviors. To realize it, we use a concept of structured learning which emphasizes the importance of an interactive learning of several modules through interaction with its environment. In a proposed method, a robot obtains hand-to-hand behavior by using an interactive evolutionary computation based on human evaluations estimated by fuzzy state-value functions. Moreover, a self-organizing map is used for clustering human hand positions. A state-value function and a knowledge database are assigned to each clustered positions. Furthermore, the best trajectory is stored in the knowledge database to reuse it in the same situation. Some experimental results show the effectiveness of the proposed method.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1331173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作的目的是开发能够获得和积累人类友好行为的伙伴机器人。为了实现这一点,我们使用了结构化学习的概念,该概念强调了通过与其环境的交互对多个模块进行交互式学习的重要性。在该方法中,机器人通过基于模糊状态值函数估计的人类评价的交互式进化计算来获得肉搏战行为。此外,使用自组织映射对人手位置进行聚类。每个聚类位置分配一个状态值函数和一个知识库。并将最佳轨迹存储在知识库中,以便在相同情况下重用。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory generation and accumulation for partner robots based on structured learning
The aim of This work is to develop partner robots that can obtain and accumulate human-friendly behaviors. To realize it, we use a concept of structured learning which emphasizes the importance of an interactive learning of several modules through interaction with its environment. In a proposed method, a robot obtains hand-to-hand behavior by using an interactive evolutionary computation based on human evaluations estimated by fuzzy state-value functions. Moreover, a self-organizing map is used for clustering human hand positions. A state-value function and a knowledge database are assigned to each clustered positions. Furthermore, the best trajectory is stored in the knowledge database to reuse it in the same situation. Some experimental results show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信