{"title":"带单片集成电路的金微电极阵列用于生物分子相互作用的无标记监测","authors":"Yu-Chieh Lee, Hsin Chen","doi":"10.1109/ISBB.2014.6820921","DOIUrl":null,"url":null,"abstract":"This paper presents a CMOS chip integrating EGFETs (extended-gate field-effect transistors) with gold microelectrodes for label-free monitoring of the DNA amplification. The accumulation of intrinsic charges of DNAs causes the surface potential of microelectrodes to change gradually, and the potential change is detected by the readout circuit integrated with the microelectrodes. A second-order Bessel low pass filter is further employed to eliminate both high-frequency noise and ground interferences.","PeriodicalId":265886,"journal":{"name":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gold microelectrode arrays with monolithically-integrated circuits for label-free monitoring of bio-molecule interaction in-situ\",\"authors\":\"Yu-Chieh Lee, Hsin Chen\",\"doi\":\"10.1109/ISBB.2014.6820921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a CMOS chip integrating EGFETs (extended-gate field-effect transistors) with gold microelectrodes for label-free monitoring of the DNA amplification. The accumulation of intrinsic charges of DNAs causes the surface potential of microelectrodes to change gradually, and the potential change is detected by the readout circuit integrated with the microelectrodes. A second-order Bessel low pass filter is further employed to eliminate both high-frequency noise and ground interferences.\",\"PeriodicalId\":265886,\"journal\":{\"name\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBB.2014.6820921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2014.6820921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gold microelectrode arrays with monolithically-integrated circuits for label-free monitoring of bio-molecule interaction in-situ
This paper presents a CMOS chip integrating EGFETs (extended-gate field-effect transistors) with gold microelectrodes for label-free monitoring of the DNA amplification. The accumulation of intrinsic charges of DNAs causes the surface potential of microelectrodes to change gradually, and the potential change is detected by the readout circuit integrated with the microelectrodes. A second-order Bessel low pass filter is further employed to eliminate both high-frequency noise and ground interferences.