Qimiao Chen, Xiren Chen, Zhenpu Zhang, Yuxin Song, Peng Wang, Juanjuan Liu, P. Lu, Yaoyao Li, Q. Gong, Shumin Wang
{"title":"拉伸应变锗量子点的光致发光","authors":"Qimiao Chen, Xiren Chen, Zhenpu Zhang, Yuxin Song, Peng Wang, Juanjuan Liu, P. Lu, Yaoyao Li, Q. Gong, Shumin Wang","doi":"10.1109/PHOSST.2016.7548749","DOIUrl":null,"url":null,"abstract":"Summary form only given. It has been theoretically predicted that 1.9% biaxial tensile strain can convert Ge, which is compatible with Si CMOS technology, into a direct band-gap semiconductor, making it a candidate material for light sources on Si. Combining the advantage of tensile strain with quantum dot (QD), we proposed that tensile-strained QD is a new route toward light emission from Ge. In this work, we chose In0.52Al0.48As, which is lattice matched to InP, as barrier layer and grew the structure by molecular beam epitaxy (MBE). Photoluminescence (PL) was successfully achieved at room temperature.","PeriodicalId":337671,"journal":{"name":"2016 IEEE Photonics Society Summer Topical Meeting Series (SUM)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoluminescence from tensile-strained Ge quantum dots\",\"authors\":\"Qimiao Chen, Xiren Chen, Zhenpu Zhang, Yuxin Song, Peng Wang, Juanjuan Liu, P. Lu, Yaoyao Li, Q. Gong, Shumin Wang\",\"doi\":\"10.1109/PHOSST.2016.7548749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. It has been theoretically predicted that 1.9% biaxial tensile strain can convert Ge, which is compatible with Si CMOS technology, into a direct band-gap semiconductor, making it a candidate material for light sources on Si. Combining the advantage of tensile strain with quantum dot (QD), we proposed that tensile-strained QD is a new route toward light emission from Ge. In this work, we chose In0.52Al0.48As, which is lattice matched to InP, as barrier layer and grew the structure by molecular beam epitaxy (MBE). Photoluminescence (PL) was successfully achieved at room temperature.\",\"PeriodicalId\":337671,\"journal\":{\"name\":\"2016 IEEE Photonics Society Summer Topical Meeting Series (SUM)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Photonics Society Summer Topical Meeting Series (SUM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHOSST.2016.7548749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Photonics Society Summer Topical Meeting Series (SUM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHOSST.2016.7548749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photoluminescence from tensile-strained Ge quantum dots
Summary form only given. It has been theoretically predicted that 1.9% biaxial tensile strain can convert Ge, which is compatible with Si CMOS technology, into a direct band-gap semiconductor, making it a candidate material for light sources on Si. Combining the advantage of tensile strain with quantum dot (QD), we proposed that tensile-strained QD is a new route toward light emission from Ge. In this work, we chose In0.52Al0.48As, which is lattice matched to InP, as barrier layer and grew the structure by molecular beam epitaxy (MBE). Photoluminescence (PL) was successfully achieved at room temperature.