可重构设计的自动化优化

Maciej Kurek, Tobias Becker, T. Chau, W. Luk
{"title":"可重构设计的自动化优化","authors":"Maciej Kurek, Tobias Becker, T. Chau, W. Luk","doi":"10.1109/FCCM.2014.65","DOIUrl":null,"url":null,"abstract":"We present Automatic Reconfigurable Design Efficient Global Optimization (ARDEGO), a new algorithm based on the existing Efficient Global Optimization (EGO) methodology for automating optimization of reconfigurable designs targeting Field-Programmable Gate Array (FPGA) technology. It is a potentially disruptive design approach: instead of manually improving designs repeatedly but without understanding the design space as a whole, ARDEGO users follow a novel approach that: (a) automates the manual optimization process, significantly reducing optimization time and (b) does not require the user to calibrate or understand the inner workings of the algorithm. We evaluate ARDEGO using two case studies: financial option pricing and seismic imaging.","PeriodicalId":246162,"journal":{"name":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Automating Optimization of Reconfigurable Designs\",\"authors\":\"Maciej Kurek, Tobias Becker, T. Chau, W. Luk\",\"doi\":\"10.1109/FCCM.2014.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Automatic Reconfigurable Design Efficient Global Optimization (ARDEGO), a new algorithm based on the existing Efficient Global Optimization (EGO) methodology for automating optimization of reconfigurable designs targeting Field-Programmable Gate Array (FPGA) technology. It is a potentially disruptive design approach: instead of manually improving designs repeatedly but without understanding the design space as a whole, ARDEGO users follow a novel approach that: (a) automates the manual optimization process, significantly reducing optimization time and (b) does not require the user to calibrate or understand the inner workings of the algorithm. We evaluate ARDEGO using two case studies: financial option pricing and seismic imaging.\",\"PeriodicalId\":246162,\"journal\":{\"name\":\"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2014.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2014.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种基于现有的高效全局优化(EGO)方法的自动可重构设计高效全局优化(ARDEGO)算法,用于针对现场可编程门阵列(FPGA)技术的可重构设计的自动优化。这是一种潜在的颠覆性设计方法:ARDEGO用户不需要在不了解整个设计空间的情况下反复手动改进设计,而是采用一种新颖的方法:(a)自动化手动优化过程,显著减少优化时间;(b)不需要用户校准或理解算法的内部工作原理。我们使用两个案例研究来评估ARDEGO:金融期权定价和地震成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automating Optimization of Reconfigurable Designs
We present Automatic Reconfigurable Design Efficient Global Optimization (ARDEGO), a new algorithm based on the existing Efficient Global Optimization (EGO) methodology for automating optimization of reconfigurable designs targeting Field-Programmable Gate Array (FPGA) technology. It is a potentially disruptive design approach: instead of manually improving designs repeatedly but without understanding the design space as a whole, ARDEGO users follow a novel approach that: (a) automates the manual optimization process, significantly reducing optimization time and (b) does not require the user to calibrate or understand the inner workings of the algorithm. We evaluate ARDEGO using two case studies: financial option pricing and seismic imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信