使用超体素跟踪密集人群中的人

Shota Takayama, Teppei Suzuki, Y. Aoki, S. Isobe, Makoto Masuda
{"title":"使用超体素跟踪密集人群中的人","authors":"Shota Takayama, Teppei Suzuki, Y. Aoki, S. Isobe, Makoto Masuda","doi":"10.1109/SITIS.2016.90","DOIUrl":null,"url":null,"abstract":"The demand for people tracking in dense crowds is increasing, but it is a challenging problem in the computer vision field. \"Crowd tracking\" is extremely difficult because of hard occlusions, various motions and posture changes. In particular, we need to handle occlusions for more robust tracking. This paper discusses robust crowd tracking based on a combination of supervoxels and optical flow tracking. The SLIC based supervoxel algorithm adaptively estimates the boundary between a person and a background. Therefore, the combination of supervoxels and optical flow tracking becomes a highly reliable approach for crowd tracking. In tracking experiments, high performance is achieved for the UCF crowd dataset.","PeriodicalId":403704,"journal":{"name":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tracking People in Dense Crowds Using Supervoxels\",\"authors\":\"Shota Takayama, Teppei Suzuki, Y. Aoki, S. Isobe, Makoto Masuda\",\"doi\":\"10.1109/SITIS.2016.90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for people tracking in dense crowds is increasing, but it is a challenging problem in the computer vision field. \\\"Crowd tracking\\\" is extremely difficult because of hard occlusions, various motions and posture changes. In particular, we need to handle occlusions for more robust tracking. This paper discusses robust crowd tracking based on a combination of supervoxels and optical flow tracking. The SLIC based supervoxel algorithm adaptively estimates the boundary between a person and a background. Therefore, the combination of supervoxels and optical flow tracking becomes a highly reliable approach for crowd tracking. In tracking experiments, high performance is achieved for the UCF crowd dataset.\",\"PeriodicalId\":403704,\"journal\":{\"name\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2016.90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2016.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在密集人群中跟踪人的需求日益增加,但这是计算机视觉领域的一个具有挑战性的问题。“人群跟踪”是非常困难的,因为硬闭塞,各种动作和姿势的变化。特别是,我们需要处理遮挡以实现更稳健的跟踪。本文讨论了基于超体素和光流跟踪相结合的鲁棒人群跟踪方法。基于SLIC的超体素算法自适应估计人与背景之间的边界。因此,超体素和光流跟踪相结合成为一种高度可靠的人群跟踪方法。在跟踪实验中,UCF人群数据集取得了较高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking People in Dense Crowds Using Supervoxels
The demand for people tracking in dense crowds is increasing, but it is a challenging problem in the computer vision field. "Crowd tracking" is extremely difficult because of hard occlusions, various motions and posture changes. In particular, we need to handle occlusions for more robust tracking. This paper discusses robust crowd tracking based on a combination of supervoxels and optical flow tracking. The SLIC based supervoxel algorithm adaptively estimates the boundary between a person and a background. Therefore, the combination of supervoxels and optical flow tracking becomes a highly reliable approach for crowd tracking. In tracking experiments, high performance is achieved for the UCF crowd dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信