充液管道不同方向泄漏声振动模态分析及泄漏检测定位

Shuaiyong Li, Y. Wen, Ping Li, Jin Yang, Jing Wen
{"title":"充液管道不同方向泄漏声振动模态分析及泄漏检测定位","authors":"Shuaiyong Li, Y. Wen, Ping Li, Jin Yang, Jing Wen","doi":"10.1109/ULTSYM.2014.0349","DOIUrl":null,"url":null,"abstract":"The leakage-induced acoustic vibrations are guided by the pipelines and discretized into several modes. Different modes exhibit different dispersive behaviors and generate vibrations of different directions. In this study, the modal characteristics of acoustic vibrations in different directions are investigated theoretically and experimentally. The dispersive natures and the displacement distributions of the guided wave modes in fluid-filled pipelines are analyzed using the guided wave theory. Theoretical analysis predicts that the axial vibrations are dominated by a single non-dispersive longitudinal mode, while the radial and circumferential vibrations are dominated by more than one dispersive modes respectively in the frequency range 0-2.5kHz. Then the experimental investigations convince the theoretical predictions and demonstrate that the axial vibrations are dominated by an individual non-dispersive guided wave with small attenuation rate in the frequency region 0-2.5 kHz. These discoveries demonstrate that, at information acquisition stage, exclusively picking up the axial vibration can significantly improve leak detection and location in the pipelines compared to the conventional detection of the radial vibration.","PeriodicalId":153901,"journal":{"name":"2014 IEEE International Ultrasonics Symposium","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modal analysis of leakage-induced acoustic vibrations in different directions for leak detection and location in fluid-filled pipelines\",\"authors\":\"Shuaiyong Li, Y. Wen, Ping Li, Jin Yang, Jing Wen\",\"doi\":\"10.1109/ULTSYM.2014.0349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The leakage-induced acoustic vibrations are guided by the pipelines and discretized into several modes. Different modes exhibit different dispersive behaviors and generate vibrations of different directions. In this study, the modal characteristics of acoustic vibrations in different directions are investigated theoretically and experimentally. The dispersive natures and the displacement distributions of the guided wave modes in fluid-filled pipelines are analyzed using the guided wave theory. Theoretical analysis predicts that the axial vibrations are dominated by a single non-dispersive longitudinal mode, while the radial and circumferential vibrations are dominated by more than one dispersive modes respectively in the frequency range 0-2.5kHz. Then the experimental investigations convince the theoretical predictions and demonstrate that the axial vibrations are dominated by an individual non-dispersive guided wave with small attenuation rate in the frequency region 0-2.5 kHz. These discoveries demonstrate that, at information acquisition stage, exclusively picking up the axial vibration can significantly improve leak detection and location in the pipelines compared to the conventional detection of the radial vibration.\",\"PeriodicalId\":153901,\"journal\":{\"name\":\"2014 IEEE International Ultrasonics Symposium\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2014.0349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2014.0349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

泄漏声振动在管道的引导下离散成多种模态。不同的模态表现出不同的色散行为,产生不同方向的振动。本文对不同方向声振动的模态特性进行了理论和实验研究。利用导波理论分析了充液管道中导波模态的色散特性和位移分布。理论分析表明,在0 ~ 2.5 khz频率范围内,轴向振动以单一的非色散纵向模态为主,而径向和周向振动分别以多个色散模态为主。实验研究证实了理论预测,并证明了轴向振动是由单个非色散导波主导的,在0-2.5 kHz频率范围内衰减率很小。这些发现表明,在信息采集阶段,与传统的径向振动检测相比,仅采集轴向振动可以显著提高管道中的泄漏检测和定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modal analysis of leakage-induced acoustic vibrations in different directions for leak detection and location in fluid-filled pipelines
The leakage-induced acoustic vibrations are guided by the pipelines and discretized into several modes. Different modes exhibit different dispersive behaviors and generate vibrations of different directions. In this study, the modal characteristics of acoustic vibrations in different directions are investigated theoretically and experimentally. The dispersive natures and the displacement distributions of the guided wave modes in fluid-filled pipelines are analyzed using the guided wave theory. Theoretical analysis predicts that the axial vibrations are dominated by a single non-dispersive longitudinal mode, while the radial and circumferential vibrations are dominated by more than one dispersive modes respectively in the frequency range 0-2.5kHz. Then the experimental investigations convince the theoretical predictions and demonstrate that the axial vibrations are dominated by an individual non-dispersive guided wave with small attenuation rate in the frequency region 0-2.5 kHz. These discoveries demonstrate that, at information acquisition stage, exclusively picking up the axial vibration can significantly improve leak detection and location in the pipelines compared to the conventional detection of the radial vibration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信