{"title":"故障注入攻击下程序行为分析","authors":"J. Breier","doi":"10.1109/ARES.2016.4","DOIUrl":null,"url":null,"abstract":"Fault attacks pose a serious threat to cryptographic algorithm implementations. It is a non-trivial task to design a code that minimizes the risk of exploiting the incorrect output that was produced by inducing faults in the algorithm execution process. In this paper we propose a design of an instruction set simulator capable of analyzing the code behavior under fault attack conditions. Our simulator is easy to use and provides a valuable insights for the designers that could help to harden the code they implement.","PeriodicalId":216417,"journal":{"name":"2016 11th International Conference on Availability, Reliability and Security (ARES)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On Analyzing Program Behavior under Fault Injection Attacks\",\"authors\":\"J. Breier\",\"doi\":\"10.1109/ARES.2016.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault attacks pose a serious threat to cryptographic algorithm implementations. It is a non-trivial task to design a code that minimizes the risk of exploiting the incorrect output that was produced by inducing faults in the algorithm execution process. In this paper we propose a design of an instruction set simulator capable of analyzing the code behavior under fault attack conditions. Our simulator is easy to use and provides a valuable insights for the designers that could help to harden the code they implement.\",\"PeriodicalId\":216417,\"journal\":{\"name\":\"2016 11th International Conference on Availability, Reliability and Security (ARES)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 11th International Conference on Availability, Reliability and Security (ARES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARES.2016.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Conference on Availability, Reliability and Security (ARES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARES.2016.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Analyzing Program Behavior under Fault Injection Attacks
Fault attacks pose a serious threat to cryptographic algorithm implementations. It is a non-trivial task to design a code that minimizes the risk of exploiting the incorrect output that was produced by inducing faults in the algorithm execution process. In this paper we propose a design of an instruction set simulator capable of analyzing the code behavior under fault attack conditions. Our simulator is easy to use and provides a valuable insights for the designers that could help to harden the code they implement.