基于深度卷积生成对抗网络的油藏连通性模式重建

Rodrigo Exterkoetter, F. Bordignon, L. D. Figueiredo, M. Roisenberg, B. B. Rodrigues
{"title":"基于深度卷积生成对抗网络的油藏连通性模式重建","authors":"Rodrigo Exterkoetter, F. Bordignon, L. D. Figueiredo, M. Roisenberg, B. B. Rodrigues","doi":"10.1109/BRACIS.2018.00025","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a deep convolutional generative adversarial network model to reconstruct the petroleum reservoir connectivity patterns. In the petroleum exploration industry, the critical issue is determining the internal reservoir structure and connectivity, aiming to find a flow channel for placing the injection and the production wells. The state-of-the-art methods propose a combination of seismic inversion with multipoint geostatistics, which imposes connectivity patterns during the optimization. However, this approach has a high computational cost, no learning ability and do not provide a probability through the connection. Results show that our approach is able to learn the petroleum reservoir connectivity patterns from the data and reproduce them also in facies images obtained by the seismic inversion.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Petroleum Reservoir Connectivity Patterns Reconstruction Using Deep Convolutional Generative Adversarial Networks\",\"authors\":\"Rodrigo Exterkoetter, F. Bordignon, L. D. Figueiredo, M. Roisenberg, B. B. Rodrigues\",\"doi\":\"10.1109/BRACIS.2018.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a deep convolutional generative adversarial network model to reconstruct the petroleum reservoir connectivity patterns. In the petroleum exploration industry, the critical issue is determining the internal reservoir structure and connectivity, aiming to find a flow channel for placing the injection and the production wells. The state-of-the-art methods propose a combination of seismic inversion with multipoint geostatistics, which imposes connectivity patterns during the optimization. However, this approach has a high computational cost, no learning ability and do not provide a probability through the connection. Results show that our approach is able to learn the petroleum reservoir connectivity patterns from the data and reproduce them also in facies images obtained by the seismic inversion.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2018.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种深度卷积生成对抗网络模型来重建油藏连通性模式。在石油勘探工业中,关键问题是确定储层内部结构和连通性,以寻找注入井和生产井的流动通道。最先进的方法提出了地震反演与多点地质统计的结合,这在优化过程中施加了连通性模式。然而,这种方法计算成本高,没有学习能力,并且不提供通过连接的概率。结果表明,该方法能够从数据中学习到油气储层的连通性模式,并能在地震反演得到的相图中再现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Petroleum Reservoir Connectivity Patterns Reconstruction Using Deep Convolutional Generative Adversarial Networks
In this paper, we propose a deep convolutional generative adversarial network model to reconstruct the petroleum reservoir connectivity patterns. In the petroleum exploration industry, the critical issue is determining the internal reservoir structure and connectivity, aiming to find a flow channel for placing the injection and the production wells. The state-of-the-art methods propose a combination of seismic inversion with multipoint geostatistics, which imposes connectivity patterns during the optimization. However, this approach has a high computational cost, no learning ability and do not provide a probability through the connection. Results show that our approach is able to learn the petroleum reservoir connectivity patterns from the data and reproduce them also in facies images obtained by the seismic inversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信