{"title":"变化世界中的负载平衡:处理异构性和性能可变性","authors":"Michael Boyer, K. Skadron, Shuai Che, N. Jayasena","doi":"10.1145/2482767.2482794","DOIUrl":null,"url":null,"abstract":"Fully utilizing the power of modern heterogeneous systems requires judiciously dividing work across all of the available computational devices. Existing approaches for partitioning work require offline training and generate fixed partitions that fail to respond to fluctuations in device performance that occur at run time. We present a novel dynamic approach to work partitioning that requires no offline training and responds automatically to performance variability to provide consistently good performance. Using six diverse OpenCL#8482; applications, we demonstrate the effectiveness of our approach in scenarios both with and without run-time performance variability, as well as in more extreme scenarios in which one device is non-functional.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Load balancing in a changing world: dealing with heterogeneity and performance variability\",\"authors\":\"Michael Boyer, K. Skadron, Shuai Che, N. Jayasena\",\"doi\":\"10.1145/2482767.2482794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully utilizing the power of modern heterogeneous systems requires judiciously dividing work across all of the available computational devices. Existing approaches for partitioning work require offline training and generate fixed partitions that fail to respond to fluctuations in device performance that occur at run time. We present a novel dynamic approach to work partitioning that requires no offline training and responds automatically to performance variability to provide consistently good performance. Using six diverse OpenCL#8482; applications, we demonstrate the effectiveness of our approach in scenarios both with and without run-time performance variability, as well as in more extreme scenarios in which one device is non-functional.\",\"PeriodicalId\":430420,\"journal\":{\"name\":\"ACM International Conference on Computing Frontiers\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2482767.2482794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2482767.2482794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Load balancing in a changing world: dealing with heterogeneity and performance variability
Fully utilizing the power of modern heterogeneous systems requires judiciously dividing work across all of the available computational devices. Existing approaches for partitioning work require offline training and generate fixed partitions that fail to respond to fluctuations in device performance that occur at run time. We present a novel dynamic approach to work partitioning that requires no offline training and responds automatically to performance variability to provide consistently good performance. Using six diverse OpenCL#8482; applications, we demonstrate the effectiveness of our approach in scenarios both with and without run-time performance variability, as well as in more extreme scenarios in which one device is non-functional.