变化世界中的负载平衡:处理异构性和性能可变性

Michael Boyer, K. Skadron, Shuai Che, N. Jayasena
{"title":"变化世界中的负载平衡:处理异构性和性能可变性","authors":"Michael Boyer, K. Skadron, Shuai Che, N. Jayasena","doi":"10.1145/2482767.2482794","DOIUrl":null,"url":null,"abstract":"Fully utilizing the power of modern heterogeneous systems requires judiciously dividing work across all of the available computational devices. Existing approaches for partitioning work require offline training and generate fixed partitions that fail to respond to fluctuations in device performance that occur at run time. We present a novel dynamic approach to work partitioning that requires no offline training and responds automatically to performance variability to provide consistently good performance. Using six diverse OpenCL#8482; applications, we demonstrate the effectiveness of our approach in scenarios both with and without run-time performance variability, as well as in more extreme scenarios in which one device is non-functional.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Load balancing in a changing world: dealing with heterogeneity and performance variability\",\"authors\":\"Michael Boyer, K. Skadron, Shuai Che, N. Jayasena\",\"doi\":\"10.1145/2482767.2482794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully utilizing the power of modern heterogeneous systems requires judiciously dividing work across all of the available computational devices. Existing approaches for partitioning work require offline training and generate fixed partitions that fail to respond to fluctuations in device performance that occur at run time. We present a novel dynamic approach to work partitioning that requires no offline training and responds automatically to performance variability to provide consistently good performance. Using six diverse OpenCL#8482; applications, we demonstrate the effectiveness of our approach in scenarios both with and without run-time performance variability, as well as in more extreme scenarios in which one device is non-functional.\",\"PeriodicalId\":430420,\"journal\":{\"name\":\"ACM International Conference on Computing Frontiers\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2482767.2482794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2482767.2482794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

要充分利用现代异构系统的功能,就需要明智地将工作分配到所有可用的计算设备上。现有的分区工作方法需要进行离线培训,并且生成的固定分区无法响应运行时发生的设备性能波动。我们提出了一种新的动态工作划分方法,该方法不需要离线培训,并自动响应性能变化以提供一致的良好性能。使用六种不同的OpenCL#8482;应用程序,我们证明了我们的方法在有和没有运行时性能可变性的情况下的有效性,以及在一个设备无功能的更极端的情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load balancing in a changing world: dealing with heterogeneity and performance variability
Fully utilizing the power of modern heterogeneous systems requires judiciously dividing work across all of the available computational devices. Existing approaches for partitioning work require offline training and generate fixed partitions that fail to respond to fluctuations in device performance that occur at run time. We present a novel dynamic approach to work partitioning that requires no offline training and responds automatically to performance variability to provide consistently good performance. Using six diverse OpenCL#8482; applications, we demonstrate the effectiveness of our approach in scenarios both with and without run-time performance variability, as well as in more extreme scenarios in which one device is non-functional.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信