多标签分类的遗传算法综述

Eduardo Corrêa Gonçalves, A. Freitas, A. Plastino
{"title":"多标签分类的遗传算法综述","authors":"Eduardo Corrêa Gonçalves, A. Freitas, A. Plastino","doi":"10.1109/CEC.2018.8477927","DOIUrl":null,"url":null,"abstract":"In recent years, multi-label classification (MLC) has become an emerging research topic in big data analytics and machine learning. In this problem, each object of a dataset may belong to multiple class labels and the goal is to learn a classification model that can infer the correct labels of new, previously unseen, objects. This paper presents a survey of genetic algorithms (GAs) designed for MLC tasks. The study is organized in three parts. First, we propose a new taxonomy focused on GAs for MLC. In the second part, we provide an up-to-date overview of the work in this area, categorizing the approaches identified in the literature with respect to the taxonomy. In the third and last part, we discuss some new ideas for combining GAs with MLC.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Survey of Genetic Algorithms for Multi-Label Classification\",\"authors\":\"Eduardo Corrêa Gonçalves, A. Freitas, A. Plastino\",\"doi\":\"10.1109/CEC.2018.8477927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, multi-label classification (MLC) has become an emerging research topic in big data analytics and machine learning. In this problem, each object of a dataset may belong to multiple class labels and the goal is to learn a classification model that can infer the correct labels of new, previously unseen, objects. This paper presents a survey of genetic algorithms (GAs) designed for MLC tasks. The study is organized in three parts. First, we propose a new taxonomy focused on GAs for MLC. In the second part, we provide an up-to-date overview of the work in this area, categorizing the approaches identified in the literature with respect to the taxonomy. In the third and last part, we discuss some new ideas for combining GAs with MLC.\",\"PeriodicalId\":212677,\"journal\":{\"name\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2018.8477927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

近年来,多标签分类(MLC)已成为大数据分析和机器学习领域的一个新兴研究课题。在这个问题中,数据集的每个对象可能属于多个类标签,目标是学习一个分类模型,该模型可以推断出新的、以前未见过的对象的正确标签。本文综述了针对MLC任务设计的遗传算法。本研究分为三个部分。首先,我们提出了一种新的基于GAs的MLC分类方法。在第二部分中,我们提供了该领域工作的最新概述,对文献中关于分类学的方法进行了分类。第三部分是本文的最后一部分,讨论了将GAs与MLC相结合的一些新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey of Genetic Algorithms for Multi-Label Classification
In recent years, multi-label classification (MLC) has become an emerging research topic in big data analytics and machine learning. In this problem, each object of a dataset may belong to multiple class labels and the goal is to learn a classification model that can infer the correct labels of new, previously unseen, objects. This paper presents a survey of genetic algorithms (GAs) designed for MLC tasks. The study is organized in three parts. First, we propose a new taxonomy focused on GAs for MLC. In the second part, we provide an up-to-date overview of the work in this area, categorizing the approaches identified in the literature with respect to the taxonomy. In the third and last part, we discuss some new ideas for combining GAs with MLC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信