使用强化学习在量子编译器中执行量子比特路由

Matteo G. Pozzi, Steven Herbert, A. Sengupta, Robert D. Mullins University of Cambridge Computer Laboratory, Cambridge Quantum Computing, Department of Engineering, U. Cambridge
{"title":"使用强化学习在量子编译器中执行量子比特路由","authors":"Matteo G. Pozzi, Steven Herbert, A. Sengupta, Robert D. Mullins University of Cambridge Computer Laboratory, Cambridge Quantum Computing, Department of Engineering, U. Cambridge","doi":"10.1145/3520434","DOIUrl":null,"url":null,"abstract":"‘‘Qubit routing” refers to the task of modifying quantum circuits so that they satisfy the connectivity constraints of a target quantum computer. This involves inserting SWAP gates into the circuit so that the logical gates only ever occur between adjacent physical qubits. The goal is to minimise the circuit depth added by the SWAP gates. In this article, we propose a qubit routing procedure that uses a modified version of the deep Q-learning paradigm. The system is able to outperform the qubit routing procedures from two of the most advanced quantum compilers currently available (Qiskit and t \\( | \\) ket \\( \\rangle \\) ), on both random and realistic circuits, across a range of near-term architecture sizes (with up to 50 qubits).","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Using Reinforcement Learning to Perform Qubit Routing in Quantum Compilers\",\"authors\":\"Matteo G. Pozzi, Steven Herbert, A. Sengupta, Robert D. Mullins University of Cambridge Computer Laboratory, Cambridge Quantum Computing, Department of Engineering, U. Cambridge\",\"doi\":\"10.1145/3520434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‘‘Qubit routing” refers to the task of modifying quantum circuits so that they satisfy the connectivity constraints of a target quantum computer. This involves inserting SWAP gates into the circuit so that the logical gates only ever occur between adjacent physical qubits. The goal is to minimise the circuit depth added by the SWAP gates. In this article, we propose a qubit routing procedure that uses a modified version of the deep Q-learning paradigm. The system is able to outperform the qubit routing procedures from two of the most advanced quantum compilers currently available (Qiskit and t \\\\( | \\\\) ket \\\\( \\\\rangle \\\\) ), on both random and realistic circuits, across a range of near-term architecture sizes (with up to 50 qubits).\",\"PeriodicalId\":365166,\"journal\":{\"name\":\"ACM Transactions on Quantum Computing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3520434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3520434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

“量子比特路由”是指修改量子电路,使其满足目标量子计算机的连接约束的任务。这涉及到在电路中插入SWAP门,以便逻辑门只发生在相邻的物理量子位之间。目标是最小化SWAP门所增加的电路深度。在本文中,我们提出了一个量子比特路由过程,该过程使用了深度q学习范式的修改版本。该系统能够在随机和现实电路中,在一系列近期架构尺寸(最多50个量子位)上,超越目前可用的两个最先进的量子编译器(Qiskit和t \( | \) ket \( \rangle \))的量子位路由程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Reinforcement Learning to Perform Qubit Routing in Quantum Compilers
‘‘Qubit routing” refers to the task of modifying quantum circuits so that they satisfy the connectivity constraints of a target quantum computer. This involves inserting SWAP gates into the circuit so that the logical gates only ever occur between adjacent physical qubits. The goal is to minimise the circuit depth added by the SWAP gates. In this article, we propose a qubit routing procedure that uses a modified version of the deep Q-learning paradigm. The system is able to outperform the qubit routing procedures from two of the most advanced quantum compilers currently available (Qiskit and t \( | \) ket \( \rangle \) ), on both random and realistic circuits, across a range of near-term architecture sizes (with up to 50 qubits).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信