面向信号处理的大数据隐私保护方法

Xiaohua Li, Thomas T. Yang
{"title":"面向信号处理的大数据隐私保护方法","authors":"Xiaohua Li, Thomas T. Yang","doi":"10.1109/HASE.2015.23","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenge of big data security by exploiting signal processing theories. We propose a new big data privacy protocol that scrambles data via artificial noise and secret transform matrices. The utility of the scrambled data is maintained, as demonstrated by a cyber-physical system application. We further outline the proof of the proposed protocol's privacy by considering the limitations of blind source separation and compressive sensing.","PeriodicalId":248645,"journal":{"name":"2015 IEEE 16th International Symposium on High Assurance Systems Engineering","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal Processing Oriented Approach for Big Data Privacy\",\"authors\":\"Xiaohua Li, Thomas T. Yang\",\"doi\":\"10.1109/HASE.2015.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the challenge of big data security by exploiting signal processing theories. We propose a new big data privacy protocol that scrambles data via artificial noise and secret transform matrices. The utility of the scrambled data is maintained, as demonstrated by a cyber-physical system application. We further outline the proof of the proposed protocol's privacy by considering the limitations of blind source separation and compressive sensing.\",\"PeriodicalId\":248645,\"journal\":{\"name\":\"2015 IEEE 16th International Symposium on High Assurance Systems Engineering\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 16th International Symposium on High Assurance Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HASE.2015.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 16th International Symposium on High Assurance Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HASE.2015.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用信号处理理论解决了大数据安全的挑战。提出了一种利用人工噪声和秘密变换矩阵对数据进行加密的大数据保密协议。如网络物理系统应用程序所示,维护了加密数据的效用。通过考虑盲源分离和压缩感知的局限性,我们进一步概述了所提出协议的隐私证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal Processing Oriented Approach for Big Data Privacy
This paper addresses the challenge of big data security by exploiting signal processing theories. We propose a new big data privacy protocol that scrambles data via artificial noise and secret transform matrices. The utility of the scrambled data is maintained, as demonstrated by a cyber-physical system application. We further outline the proof of the proposed protocol's privacy by considering the limitations of blind source separation and compressive sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信