{"title":"最大匹配切割的二分类:h自由度,有界直径,有界半径","authors":"Felicia Lucke, D. Paulusma, B. Ries","doi":"10.48550/arXiv.2304.01099","DOIUrl":null,"url":null,"abstract":"The (Perfect) Matching Cut problem is to decide if a graph $G$ has a (perfect) matching cut, i.e., a (perfect) matching that is also an edge cut of $G$. Both Matching Cut and Perfect Matching Cut are known to be NP-complete, leading to many complexity results for both problems on special graph classes. A perfect matching cut is also a matching cut with maximum number of edges. To increase our understanding of the relationship between the two problems, we introduce the Maximum Matching Cut problem. This problem is to determine a largest matching cut in a graph. We generalize and unify known polynomial-time algorithms for Matching Cut and Perfect Matching Cut restricted to graphs of diameter at most $2$ and to $(P_6 + sP_2)$-free graphs. We also show that the complexity of Maximum Matching Cut} differs from the complexities of Matching Cut and Perfect Matching Cut by proving NP-hardness of Maximum Matching Cut for $2P_3$-free quadrangulated graphs of diameter 3 and radius 2 and for subcubic line graphs of triangle-free graphs. In this way, we obtain full dichotomies of Maximum Matching Cut for graphs of bounded diameter, bounded radius and $H$-free graphs.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dichotomies for Maximum Matching Cut: H-Freeness, Bounded Diameter, Bounded Radius\",\"authors\":\"Felicia Lucke, D. Paulusma, B. Ries\",\"doi\":\"10.48550/arXiv.2304.01099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The (Perfect) Matching Cut problem is to decide if a graph $G$ has a (perfect) matching cut, i.e., a (perfect) matching that is also an edge cut of $G$. Both Matching Cut and Perfect Matching Cut are known to be NP-complete, leading to many complexity results for both problems on special graph classes. A perfect matching cut is also a matching cut with maximum number of edges. To increase our understanding of the relationship between the two problems, we introduce the Maximum Matching Cut problem. This problem is to determine a largest matching cut in a graph. We generalize and unify known polynomial-time algorithms for Matching Cut and Perfect Matching Cut restricted to graphs of diameter at most $2$ and to $(P_6 + sP_2)$-free graphs. We also show that the complexity of Maximum Matching Cut} differs from the complexities of Matching Cut and Perfect Matching Cut by proving NP-hardness of Maximum Matching Cut for $2P_3$-free quadrangulated graphs of diameter 3 and radius 2 and for subcubic line graphs of triangle-free graphs. In this way, we obtain full dichotomies of Maximum Matching Cut for graphs of bounded diameter, bounded radius and $H$-free graphs.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2304.01099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.01099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dichotomies for Maximum Matching Cut: H-Freeness, Bounded Diameter, Bounded Radius
The (Perfect) Matching Cut problem is to decide if a graph $G$ has a (perfect) matching cut, i.e., a (perfect) matching that is also an edge cut of $G$. Both Matching Cut and Perfect Matching Cut are known to be NP-complete, leading to many complexity results for both problems on special graph classes. A perfect matching cut is also a matching cut with maximum number of edges. To increase our understanding of the relationship between the two problems, we introduce the Maximum Matching Cut problem. This problem is to determine a largest matching cut in a graph. We generalize and unify known polynomial-time algorithms for Matching Cut and Perfect Matching Cut restricted to graphs of diameter at most $2$ and to $(P_6 + sP_2)$-free graphs. We also show that the complexity of Maximum Matching Cut} differs from the complexities of Matching Cut and Perfect Matching Cut by proving NP-hardness of Maximum Matching Cut for $2P_3$-free quadrangulated graphs of diameter 3 and radius 2 and for subcubic line graphs of triangle-free graphs. In this way, we obtain full dichotomies of Maximum Matching Cut for graphs of bounded diameter, bounded radius and $H$-free graphs.