基于生成对抗网络的皮肤病分类改进

Bisakh Mondal, N. Das, K. Santosh, M. Nasipuri
{"title":"基于生成对抗网络的皮肤病分类改进","authors":"Bisakh Mondal, N. Das, K. Santosh, M. Nasipuri","doi":"10.1109/CBMS49503.2020.00104","DOIUrl":null,"url":null,"abstract":"Identifying skin diseases, such as leprosy, Tinea Versicolor, and Vitiligo identification is one of the challenging tasks. Therefore, skin disease identification success rate is comparatively poor as compared to the other computer vision tasks. Traditional Deep Learning (DL) models are not successful in this domain due to the lack of a huge number of data. To address the problem, in the present work, we introduced a customized Generative Adversarial Network (GAN) to generate synthetic data. With data augmentation, we achieved maximum 94.25% recognition accuracy using DensenNet-121, which was 10.95% better than when no augmentation was employed. Source code is publicly available at https://github.com/DVLP-CMATERJU/SkinDiseases_GenerativeAI.git GitHub.","PeriodicalId":121059,"journal":{"name":"2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improved Skin Disease Classification Using Generative Adversarial Network\",\"authors\":\"Bisakh Mondal, N. Das, K. Santosh, M. Nasipuri\",\"doi\":\"10.1109/CBMS49503.2020.00104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying skin diseases, such as leprosy, Tinea Versicolor, and Vitiligo identification is one of the challenging tasks. Therefore, skin disease identification success rate is comparatively poor as compared to the other computer vision tasks. Traditional Deep Learning (DL) models are not successful in this domain due to the lack of a huge number of data. To address the problem, in the present work, we introduced a customized Generative Adversarial Network (GAN) to generate synthetic data. With data augmentation, we achieved maximum 94.25% recognition accuracy using DensenNet-121, which was 10.95% better than when no augmentation was employed. Source code is publicly available at https://github.com/DVLP-CMATERJU/SkinDiseases_GenerativeAI.git GitHub.\",\"PeriodicalId\":121059,\"journal\":{\"name\":\"2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS49503.2020.00104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS49503.2020.00104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

识别皮肤疾病,如麻风病、花斑癣和白癜风的识别是一项具有挑战性的任务。因此,与其他计算机视觉任务相比,皮肤病识别成功率相对较低。由于缺乏大量的数据,传统的深度学习(DL)模型在这个领域并不成功。为了解决这个问题,在目前的工作中,我们引入了一个定制的生成对抗网络(GAN)来生成合成数据。在数据增强的情况下,使用DensenNet-121的识别准确率达到了94.25%,比不使用增强时提高了10.95%。源代码可在https://github.com/DVLP-CMATERJU/SkinDiseases_GenerativeAI.git GitHub公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Skin Disease Classification Using Generative Adversarial Network
Identifying skin diseases, such as leprosy, Tinea Versicolor, and Vitiligo identification is one of the challenging tasks. Therefore, skin disease identification success rate is comparatively poor as compared to the other computer vision tasks. Traditional Deep Learning (DL) models are not successful in this domain due to the lack of a huge number of data. To address the problem, in the present work, we introduced a customized Generative Adversarial Network (GAN) to generate synthetic data. With data augmentation, we achieved maximum 94.25% recognition accuracy using DensenNet-121, which was 10.95% better than when no augmentation was employed. Source code is publicly available at https://github.com/DVLP-CMATERJU/SkinDiseases_GenerativeAI.git GitHub.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信