{"title":"领袖选举算法中的幸存者","authors":"Ravi Kalpathy, H. Mahmoud, W. Rosenkrantz","doi":"10.1137/1.9781611973204.11","DOIUrl":null,"url":null,"abstract":"We consider the number of survivors in a broad class of fair leader election algorithms after a number of election rounds. We give sufficient conditions for the number of survivors to converge to a product of independent identically distributed random variables. The number of terms in the product is determined by the round number considered. Each individual term in the product is a limit of a scaled random variable associated with the splitting protocol. The proof is established via convergence (to 0) of the first-order Wasserstein distance from the product limit. In a broader context, the paper is a case study of a class of stochastic recursive equations. We give two illustrative examples, one with binomial splitting protocol (for which we show that a normalized version is asymptotically Gaussian) and one with uniform splitting protocol.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Survivors in Leader Election Algorithms\",\"authors\":\"Ravi Kalpathy, H. Mahmoud, W. Rosenkrantz\",\"doi\":\"10.1137/1.9781611973204.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the number of survivors in a broad class of fair leader election algorithms after a number of election rounds. We give sufficient conditions for the number of survivors to converge to a product of independent identically distributed random variables. The number of terms in the product is determined by the round number considered. Each individual term in the product is a limit of a scaled random variable associated with the splitting protocol. The proof is established via convergence (to 0) of the first-order Wasserstein distance from the product limit. In a broader context, the paper is a case study of a class of stochastic recursive equations. We give two illustrative examples, one with binomial splitting protocol (for which we show that a normalized version is asymptotically Gaussian) and one with uniform splitting protocol.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611973204.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973204.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider the number of survivors in a broad class of fair leader election algorithms after a number of election rounds. We give sufficient conditions for the number of survivors to converge to a product of independent identically distributed random variables. The number of terms in the product is determined by the round number considered. Each individual term in the product is a limit of a scaled random variable associated with the splitting protocol. The proof is established via convergence (to 0) of the first-order Wasserstein distance from the product limit. In a broader context, the paper is a case study of a class of stochastic recursive equations. We give two illustrative examples, one with binomial splitting protocol (for which we show that a normalized version is asymptotically Gaussian) and one with uniform splitting protocol.