应用拉格朗日型1步前移数值微分法优化深度学习中的SGD算法的尝试

Enhong Liu, Dan Su, Liangming Chen, Long Jin, Xiuchun Xiao, Dongyang Fu
{"title":"应用拉格朗日型1步前移数值微分法优化深度学习中的SGD算法的尝试","authors":"Enhong Liu, Dan Su, Liangming Chen, Long Jin, Xiuchun Xiao, Dongyang Fu","doi":"10.1109/ICIST52614.2021.9440607","DOIUrl":null,"url":null,"abstract":"The form of the original stochastic gradient descent (SGD) algorithm accords with the definition of forward Euler method, which has some inherent defects. Thus, in order to improve the original SGD algorithm, a Lagrange-type 1-step-ahead numerical differentiation method based parameter update algorithm is presented and validated. Instinctively, the new algorithm can fix some inherent flaws of the SGD algorithm. However, a series of experimental results show that the Lagrange-type 1-step-ahead numerical differentiation method cannot be applied to reduce the computational error of SGD. In addition, this method makes the model appear the phenomenon of non-convergence. Finally, on the basis of comparative experiments, the divergence phenomenon is analyzed and explained.","PeriodicalId":371599,"journal":{"name":"2021 11th International Conference on Information Science and Technology (ICIST)","volume":"699 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An attempt of applying the Lagrange-type 1-step-ahead numerical differentiation method to optimize the SGD algorithm in deep learning\",\"authors\":\"Enhong Liu, Dan Su, Liangming Chen, Long Jin, Xiuchun Xiao, Dongyang Fu\",\"doi\":\"10.1109/ICIST52614.2021.9440607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The form of the original stochastic gradient descent (SGD) algorithm accords with the definition of forward Euler method, which has some inherent defects. Thus, in order to improve the original SGD algorithm, a Lagrange-type 1-step-ahead numerical differentiation method based parameter update algorithm is presented and validated. Instinctively, the new algorithm can fix some inherent flaws of the SGD algorithm. However, a series of experimental results show that the Lagrange-type 1-step-ahead numerical differentiation method cannot be applied to reduce the computational error of SGD. In addition, this method makes the model appear the phenomenon of non-convergence. Finally, on the basis of comparative experiments, the divergence phenomenon is analyzed and explained.\",\"PeriodicalId\":371599,\"journal\":{\"name\":\"2021 11th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"699 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST52614.2021.9440607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST52614.2021.9440607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

原始随机梯度下降(SGD)算法的形式符合正演欧拉法的定义,存在固有的缺陷。为此,为了改进原有的SGD算法,提出并验证了一种基于拉格朗日型1步前移数值微分法的参数更新算法。本能地,新算法可以弥补SGD算法的一些固有缺陷。然而,一系列的实验结果表明,拉格朗日型1步前进数值微分法不能用于减小SGD的计算误差。此外,该方法还使模型出现不收敛现象。最后,在对比实验的基础上,对发散现象进行了分析和解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An attempt of applying the Lagrange-type 1-step-ahead numerical differentiation method to optimize the SGD algorithm in deep learning
The form of the original stochastic gradient descent (SGD) algorithm accords with the definition of forward Euler method, which has some inherent defects. Thus, in order to improve the original SGD algorithm, a Lagrange-type 1-step-ahead numerical differentiation method based parameter update algorithm is presented and validated. Instinctively, the new algorithm can fix some inherent flaws of the SGD algorithm. However, a series of experimental results show that the Lagrange-type 1-step-ahead numerical differentiation method cannot be applied to reduce the computational error of SGD. In addition, this method makes the model appear the phenomenon of non-convergence. Finally, on the basis of comparative experiments, the divergence phenomenon is analyzed and explained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信