{"title":"基于Lyapunov的航空操纵模型参考自适应控制","authors":"M. Orsag, C. Korpela, S. Bogdan, P. Oh","doi":"10.1109/ICUAS.2013.6564783","DOIUrl":null,"url":null,"abstract":"This paper presents a control scheme to achieve dynamic stability in an aerial vehicle with dual multi-degree of freedom manipulators using a lyapunov based model reference adaptive control. Our test flight results indicate that we can accurately model and control our aerial vehicle when both moving the manipulators and interacting with target objects. Using the Lyapunov stability theory, the controller is proven to be stable. The simulation results showed how the MRAC is capable of stabilizing the oscillations produced from the unstable PI-D attitude control loop. Finally a high level control system based on a switching automaton is proposed in order to ensure the safety of the aerial manipulation missions.","PeriodicalId":322089,"journal":{"name":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"43 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Lyapunov based model reference adaptive control for aerial manipulation\",\"authors\":\"M. Orsag, C. Korpela, S. Bogdan, P. Oh\",\"doi\":\"10.1109/ICUAS.2013.6564783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a control scheme to achieve dynamic stability in an aerial vehicle with dual multi-degree of freedom manipulators using a lyapunov based model reference adaptive control. Our test flight results indicate that we can accurately model and control our aerial vehicle when both moving the manipulators and interacting with target objects. Using the Lyapunov stability theory, the controller is proven to be stable. The simulation results showed how the MRAC is capable of stabilizing the oscillations produced from the unstable PI-D attitude control loop. Finally a high level control system based on a switching automaton is proposed in order to ensure the safety of the aerial manipulation missions.\",\"PeriodicalId\":322089,\"journal\":{\"name\":\"2013 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"volume\":\"43 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUAS.2013.6564783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2013.6564783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lyapunov based model reference adaptive control for aerial manipulation
This paper presents a control scheme to achieve dynamic stability in an aerial vehicle with dual multi-degree of freedom manipulators using a lyapunov based model reference adaptive control. Our test flight results indicate that we can accurately model and control our aerial vehicle when both moving the manipulators and interacting with target objects. Using the Lyapunov stability theory, the controller is proven to be stable. The simulation results showed how the MRAC is capable of stabilizing the oscillations produced from the unstable PI-D attitude control loop. Finally a high level control system based on a switching automaton is proposed in order to ensure the safety of the aerial manipulation missions.