基于第一性原理的铁磁体/重金属双层层的自旋轨道转矩(会议报告)

Spintronics XII Pub Date : 2019-09-10 DOI:10.1117/12.2531329
K. Belashchenko, A. Kovalev, M. Schilfgaarde
{"title":"基于第一性原理的铁磁体/重金属双层层的自旋轨道转矩(会议报告)","authors":"K. Belashchenko, A. Kovalev, M. Schilfgaarde","doi":"10.1117/12.2531329","DOIUrl":null,"url":null,"abstract":"The angular dependence of spin-orbit torque in disordered ferromagnet/heavy-metal bilayers is calculated using a first-principles nonequilibrium Green's function formalism with an explicit supercell disorder averaging. We consider Co/Pt, Co/Au, and Co/Pd bilayers with varying thicknesses and disorder strengths. In addition to the usual dampinglike and fieldlike terms, the odd torque contains a sizable planar Hall-like term (m⋅E)m×(z×m) whose contribution to current-induced damping is consistent with experimental observations. The dampinglike torquance depends weakly on disorder strength, suggesting that it is dominated by the intrinsic mechanism. The fieldlike torquance declines with increasing disorder, consistent with the inverse spin-galvanic effect being dominant. It is found that the torques that contribute to damping are almost entirely due to spin-orbit coupling on the Pt atoms, but the fieldlike torque does not require it. The calculated thickness dependence suggests that the dampinglike torque has a bulk-like contribution due to the spin-Hall effect and an interfacial contribution of a comparable magnitude.","PeriodicalId":420411,"journal":{"name":"Spintronics XII","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin-orbit torque in ferromagnet/heavy-metal bilayers from first principles (Conference Presentation)\",\"authors\":\"K. Belashchenko, A. Kovalev, M. Schilfgaarde\",\"doi\":\"10.1117/12.2531329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The angular dependence of spin-orbit torque in disordered ferromagnet/heavy-metal bilayers is calculated using a first-principles nonequilibrium Green's function formalism with an explicit supercell disorder averaging. We consider Co/Pt, Co/Au, and Co/Pd bilayers with varying thicknesses and disorder strengths. In addition to the usual dampinglike and fieldlike terms, the odd torque contains a sizable planar Hall-like term (m⋅E)m×(z×m) whose contribution to current-induced damping is consistent with experimental observations. The dampinglike torquance depends weakly on disorder strength, suggesting that it is dominated by the intrinsic mechanism. The fieldlike torquance declines with increasing disorder, consistent with the inverse spin-galvanic effect being dominant. It is found that the torques that contribute to damping are almost entirely due to spin-orbit coupling on the Pt atoms, but the fieldlike torque does not require it. The calculated thickness dependence suggests that the dampinglike torque has a bulk-like contribution due to the spin-Hall effect and an interfacial contribution of a comparable magnitude.\",\"PeriodicalId\":420411,\"journal\":{\"name\":\"Spintronics XII\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spintronics XII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2531329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spintronics XII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2531329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用具有显式超级单体无序平均的第一性原理非平衡格林函数形式,计算了无序铁磁体/重金属双层中自旋轨道转矩的角依赖性。我们考虑具有不同厚度和无序强度的Co/Pt、Co/Au和Co/Pd双分子层。除了常见的类阻尼项和类场项外,奇转矩还包含一个相当大的平面类霍尔项(m⋅E) mx (z×m),其对电流诱导阻尼的贡献与实验观察结果一致。类阻尼力矩对失序强度的依赖性较弱,表明其受内在机制支配。类场转矩随无序度的增加而减小,与逆自旋电偶效应占主导地位相一致。发现产生阻尼的力矩几乎完全是由于铂原子上的自旋-轨道耦合,而类场力矩则不需要。计算的厚度依赖性表明,由于自旋霍尔效应和相当大小的界面贡献,类阻尼扭矩具有类体积贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin-orbit torque in ferromagnet/heavy-metal bilayers from first principles (Conference Presentation)
The angular dependence of spin-orbit torque in disordered ferromagnet/heavy-metal bilayers is calculated using a first-principles nonequilibrium Green's function formalism with an explicit supercell disorder averaging. We consider Co/Pt, Co/Au, and Co/Pd bilayers with varying thicknesses and disorder strengths. In addition to the usual dampinglike and fieldlike terms, the odd torque contains a sizable planar Hall-like term (m⋅E)m×(z×m) whose contribution to current-induced damping is consistent with experimental observations. The dampinglike torquance depends weakly on disorder strength, suggesting that it is dominated by the intrinsic mechanism. The fieldlike torquance declines with increasing disorder, consistent with the inverse spin-galvanic effect being dominant. It is found that the torques that contribute to damping are almost entirely due to spin-orbit coupling on the Pt atoms, but the fieldlike torque does not require it. The calculated thickness dependence suggests that the dampinglike torque has a bulk-like contribution due to the spin-Hall effect and an interfacial contribution of a comparable magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信