结合博弈论和数据挖掘的警力动态分配与打击犯罪

C. Segovia, K. Smith‐Miles
{"title":"结合博弈论和数据挖掘的警力动态分配与打击犯罪","authors":"C. Segovia, K. Smith‐Miles","doi":"10.1109/WI.2018.00016","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework that provides a strategy for police to allocate resources to tackle crime, by integrating data mining models for dynamic crime prediction with a game theoretical approach to recognize the adversarial nature of the problem. The proposed framework is applied to a real case study from Santiago (Chile), and compared to other strategies involving game theory or data mining alone. The hybrid approach is demonstrated to lead to improved payoffs for the police and reduced payoffs for the criminals. A robustness analysis explores how accuracy of the data mining models affects the outcomes of the game, showing that the proposed approach can absorb significant forecasting errors while still producing superior outcomes for the police.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integrating Game Theory and Data Mining for Dynamic Distribution of Police to Combat Crime\",\"authors\":\"C. Segovia, K. Smith‐Miles\",\"doi\":\"10.1109/WI.2018.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a framework that provides a strategy for police to allocate resources to tackle crime, by integrating data mining models for dynamic crime prediction with a game theoretical approach to recognize the adversarial nature of the problem. The proposed framework is applied to a real case study from Santiago (Chile), and compared to other strategies involving game theory or data mining alone. The hybrid approach is demonstrated to lead to improved payoffs for the police and reduced payoffs for the criminals. A robustness analysis explores how accuracy of the data mining models affects the outcomes of the game, showing that the proposed approach can absorb significant forecasting errors while still producing superior outcomes for the police.\",\"PeriodicalId\":405966,\"journal\":{\"name\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2018.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一个框架,通过将动态犯罪预测的数据挖掘模型与博弈论方法相结合,以识别问题的对抗性,为警察分配资源以解决犯罪问题提供了一个策略。提出的框架应用于圣地亚哥(智利)的实际案例研究,并与其他仅涉及博弈论或数据挖掘的策略进行了比较。这种混合方法被证明可以提高警察的回报,减少罪犯的回报。鲁棒性分析探讨了数据挖掘模型的准确性如何影响游戏结果,表明所提出的方法可以吸收显著的预测错误,同时仍然为警方产生优越的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Game Theory and Data Mining for Dynamic Distribution of Police to Combat Crime
This paper proposes a framework that provides a strategy for police to allocate resources to tackle crime, by integrating data mining models for dynamic crime prediction with a game theoretical approach to recognize the adversarial nature of the problem. The proposed framework is applied to a real case study from Santiago (Chile), and compared to other strategies involving game theory or data mining alone. The hybrid approach is demonstrated to lead to improved payoffs for the police and reduced payoffs for the criminals. A robustness analysis explores how accuracy of the data mining models affects the outcomes of the game, showing that the proposed approach can absorb significant forecasting errors while still producing superior outcomes for the police.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信