基于包签名和LSTM网络的工业控制系统多级异常检测

Cheng Feng, Tingting Li, D. Chana
{"title":"基于包签名和LSTM网络的工业控制系统多级异常检测","authors":"Cheng Feng, Tingting Li, D. Chana","doi":"10.1109/DSN.2017.34","DOIUrl":null,"url":null,"abstract":"We outline an anomaly detection method for industrial control systems (ICS) that combines the analysis of network package contents that are transacted between ICS nodes and their time-series structure. Specifically, we take advantage of the predictable and regular nature of communication patterns that exist between so-called field devices in ICS networks. By observing a system for a period of time without the presence of anomalies we develop a base-line signature database for general packages. A Bloom filter is used to store the signature database which is then used for package content level anomaly detection. Furthermore, we approach time-series anomaly detection by proposing a stacked Long Short Term Memory (LSTM) network-based softmax classifier which learns to predict the most likely package signatures that are likely to occur given previously seen package traffic. Finally, by the inspection of a real dataset created from a gas pipeline SCADA system, we show that an anomaly detection scheme combining both approaches can achieve higher performance compared to various current state-of-the-art techniques.","PeriodicalId":426928,"journal":{"name":"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"154","resultStr":"{\"title\":\"Multi-level Anomaly Detection in Industrial Control Systems via Package Signatures and LSTM Networks\",\"authors\":\"Cheng Feng, Tingting Li, D. Chana\",\"doi\":\"10.1109/DSN.2017.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We outline an anomaly detection method for industrial control systems (ICS) that combines the analysis of network package contents that are transacted between ICS nodes and their time-series structure. Specifically, we take advantage of the predictable and regular nature of communication patterns that exist between so-called field devices in ICS networks. By observing a system for a period of time without the presence of anomalies we develop a base-line signature database for general packages. A Bloom filter is used to store the signature database which is then used for package content level anomaly detection. Furthermore, we approach time-series anomaly detection by proposing a stacked Long Short Term Memory (LSTM) network-based softmax classifier which learns to predict the most likely package signatures that are likely to occur given previously seen package traffic. Finally, by the inspection of a real dataset created from a gas pipeline SCADA system, we show that an anomaly detection scheme combining both approaches can achieve higher performance compared to various current state-of-the-art techniques.\",\"PeriodicalId\":426928,\"journal\":{\"name\":\"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"154\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2017.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2017.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 154

摘要

我们概述了一种工业控制系统(ICS)的异常检测方法,该方法结合了对ICS节点之间处理的网络包内容及其时间序列结构的分析。具体来说,我们利用了ICS网络中所谓的现场设备之间存在的通信模式的可预测性和规律性。通过观察一个系统一段时间没有异常的存在,我们开发了一个一般包的基线特征数据库。布隆过滤器用于存储特征库,然后用于包内容级异常检测。此外,我们通过提出一种基于堆叠长短期记忆(LSTM)网络的softmax分类器来处理时间序列异常检测,该分类器学习预测最可能发生的数据包签名,这些签名可能是给定先前看到的数据包流量的。最后,通过对天然气管道SCADA系统创建的真实数据集的检查,我们表明,与当前各种最先进的技术相比,结合这两种方法的异常检测方案可以实现更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-level Anomaly Detection in Industrial Control Systems via Package Signatures and LSTM Networks
We outline an anomaly detection method for industrial control systems (ICS) that combines the analysis of network package contents that are transacted between ICS nodes and their time-series structure. Specifically, we take advantage of the predictable and regular nature of communication patterns that exist between so-called field devices in ICS networks. By observing a system for a period of time without the presence of anomalies we develop a base-line signature database for general packages. A Bloom filter is used to store the signature database which is then used for package content level anomaly detection. Furthermore, we approach time-series anomaly detection by proposing a stacked Long Short Term Memory (LSTM) network-based softmax classifier which learns to predict the most likely package signatures that are likely to occur given previously seen package traffic. Finally, by the inspection of a real dataset created from a gas pipeline SCADA system, we show that an anomaly detection scheme combining both approaches can achieve higher performance compared to various current state-of-the-art techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信