二维阵列的最优交错方案

S. Golomb, R. Mena, Wen-Qing Xu
{"title":"二维阵列的最优交错方案","authors":"S. Golomb, R. Mena, Wen-Qing Xu","doi":"10.1109/ITW2.2006.323691","DOIUrl":null,"url":null,"abstract":"Given an m times n array of k single random error correction (or erasure) codewords, each having length l such that mn = kl, we construct optimal interleaving schemes that provide the maximum burst error correction power such that an arbitrarily shaped error burst of size t can be corrected for the largest possible value of t. We show that for all such m times n arrays, the maximum possible interleaving distance, or equivalently, the largest value of t such that an arbitrary error burst of size up to t can be corrected, is bounded by lfloorradic2krfloor if k les lceil(min{m, n})2/2rceil, and by min{m, n} + lfloor(k - lceil(min{m, n})2/2rceil) / min{m, n}rfloor if k ges lceil(min{m, n})2/2rceil. We generalize the cyclic shifting algorithm developed by the authors in a previous paper and construct, in several special cases, optimal interleaving arrays achieving these upper bounds","PeriodicalId":299513,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Interleaving Schemes for 2-D Arrays\",\"authors\":\"S. Golomb, R. Mena, Wen-Qing Xu\",\"doi\":\"10.1109/ITW2.2006.323691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an m times n array of k single random error correction (or erasure) codewords, each having length l such that mn = kl, we construct optimal interleaving schemes that provide the maximum burst error correction power such that an arbitrarily shaped error burst of size t can be corrected for the largest possible value of t. We show that for all such m times n arrays, the maximum possible interleaving distance, or equivalently, the largest value of t such that an arbitrary error burst of size up to t can be corrected, is bounded by lfloorradic2krfloor if k les lceil(min{m, n})2/2rceil, and by min{m, n} + lfloor(k - lceil(min{m, n})2/2rceil) / min{m, n}rfloor if k ges lceil(min{m, n})2/2rceil. We generalize the cyclic shifting algorithm developed by the authors in a previous paper and construct, in several special cases, optimal interleaving arrays achieving these upper bounds\",\"PeriodicalId\":299513,\"journal\":{\"name\":\"2006 IEEE Information Theory Workshop - ITW '06 Chengdu\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Information Theory Workshop - ITW '06 Chengdu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW2.2006.323691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW2.2006.323691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个包含k个单个随机纠错(或擦除)码字的m × n数组,每个码字的长度为l,使得mn = kl,我们构建了最优交错方案,该方案提供了最大突发纠错能力,使得大小为t的任意形状的突发错误可以被纠正为最大可能的t值。我们表明,对于所有这样的m × n数组,最大可能的交错距离,或等价的,如果k小于lceil(min{m, n})2/2rceil,则t的最大值为lfloorradic2krfloor;如果k小于lceil(min{m, n})2/2rceil,则t的最大值为min{m, n} + lceil(k - lceil(min{m, n})2/2rceil) / min{m, n}rfloor (min{m, n})2/2rceil。我们推广了作者在前一篇论文中开发的循环移位算法,并在几个特殊情况下构造了达到这些上界的最优交错数组
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Interleaving Schemes for 2-D Arrays
Given an m times n array of k single random error correction (or erasure) codewords, each having length l such that mn = kl, we construct optimal interleaving schemes that provide the maximum burst error correction power such that an arbitrarily shaped error burst of size t can be corrected for the largest possible value of t. We show that for all such m times n arrays, the maximum possible interleaving distance, or equivalently, the largest value of t such that an arbitrary error burst of size up to t can be corrected, is bounded by lfloorradic2krfloor if k les lceil(min{m, n})2/2rceil, and by min{m, n} + lfloor(k - lceil(min{m, n})2/2rceil) / min{m, n}rfloor if k ges lceil(min{m, n})2/2rceil. We generalize the cyclic shifting algorithm developed by the authors in a previous paper and construct, in several special cases, optimal interleaving arrays achieving these upper bounds
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信